Patents by Inventor Jeffrey D. Ganger

Jeffrey D. Ganger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9197462
    Abstract: Apparatus and systems are provided for a single amplifier filter capable of a high quality factor. A filter comprises an amplifier having an amplifier input and an amplifier output, wherein the amplifier is configured to produce an output signal at the amplifier output based on a signal at the amplifier input. A first resistive element is coupled between an input node and the amplifier input, a second resistive element is coupled between a first node and the amplifier input, and a third resistive element is coupled between the amplifier output and the first node. A first capacitive element is coupled between the amplifier output and the amplifier input. The filter comprises a second node for an inverse of the output signal, wherein a second capacitive element is coupled between the first node and the second node.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: November 24, 2015
    Assignee: FREESCALE SEMICONDUCTOR INC.
    Inventor: Jeffrey D. Ganger
  • Patent number: 8934504
    Abstract: In accordance with some embodiments of the present disclosure, a method may include determining a range of frequencies allocated to resource blocks to be transmitted during a subsequent sub-frame slot or sounding reference symbol sub-slot. The method may also include determining an approximate center frequency of the range of frequencies. The method may additionally include modulating resource blocks of the sub-frame or sounding reference symbol sub-slot at the approximate center frequency. The method may further include transmitting the modulated resource blocks at the approximate center frequency.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: January 13, 2015
    Assignee: Intel IP Corporation
    Inventors: Daniel B. Schwartz, David Harnishfeger, Jeffrey D. Ganger, George B. Norris, Bing Xu, Mark Alan Kirschenmann, Claudio Rey
  • Publication number: 20140369439
    Abstract: Apparatus and systems are provided for a single amplifier filter capable of a high quality factor. A filter comprises an amplifier having an amplifier input and an amplifier output, wherein the amplifier is configured to produce an output signal at the amplifier output based on a signal at the amplifier input. A first resistive element is coupled between an input node and the amplifier input, a second resistive element is coupled between a first node and the amplifier input, and a third resistive element is coupled between the amplifier output and the first node. A first capacitive element is coupled between the amplifier output and the amplifier input. The filter comprises a second node for an inverse of the output signal, wherein a second capacitive element is coupled between the first node and the second node.
    Type: Application
    Filed: August 15, 2014
    Publication date: December 18, 2014
    Inventor: JEFFREY D. GANGER
  • Patent number: 8816758
    Abstract: Apparatus and systems are provided for a single amplifier filter capable of a high quality factor. A filter comprises an amplifier having an amplifier input and an amplifier output, wherein the amplifier is configured to produce an output signal at the amplifier output based on a signal at the amplifier input. A first resistive element is coupled between an input node and the amplifier input, a second resistive element is coupled between a first node and the amplifier input, and a third resistive element is coupled between the amplifier output and the first node. A first capacitive element is coupled between the amplifier output and the amplifier input. The filter comprises a second node for an inverse of the output signal, wherein a second capacitive element is coupled between the first node and the second node.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: August 26, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Jeffrey D. Ganger
  • Publication number: 20130039368
    Abstract: In accordance with some embodiments of the present disclosure, a method may include determining a range of frequencies allocated to resource blocks to be transmitted during a subsequent sub-frame slot or sounding reference symbol sub-slot. The method may also include determining an approximate center frequency of the range of frequencies. The method may additionally include modulating resource blocks of the sub-frame or sounding reference symbol sub-slot at the approximate center frequency. The method may further include transmitting the modulated resource blocks at the approximate center frequency.
    Type: Application
    Filed: August 12, 2011
    Publication date: February 14, 2013
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Daniel B. Schwartz, David Harnishfeger, Jeffrey D. Ganger, George B. Norris, Bing Xu, Mark Alan Kirschenmann, Claudio Rey
  • Patent number: 8363703
    Abstract: A method may include performing a logical exclusive OR and a logical inverse exclusive or on an input reference signal and an output signal to generate an XOR signal and an XNOR signal, respectively. The method may also include generating a switch control signal indicative of whether a first phase of the input reference signal leads or lags a second phase of the output signal. The method may additionally include: (i) transmitting the XOR signal to an output of a switch if the first phase leads the second phase; and (ii) transmitting the XNOR signal to the output of the switch if the first phase lags the second phase. The method may further include generating a phase detector output signal indicative of a phase difference between the second phase based on a signal present on the output of the switch.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: January 29, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Jeffrey D. Ganger, Claudio G. Rey
  • Publication number: 20120082247
    Abstract: A method may include performing a logical exclusive OR and a logical inverse exclusive or on an input reference signal and an output signal to generate an XOR signal and an XNOR signal, respectively. The method may also include generating a switch control signal indicative of whether a first phase of the input reference signal leads or lags a second phase of the output signal. The method may additionally include: (i) transmitting the XOR signal to an output of a switch if the first phase leads the second phase; and (ii) transmitting the XNOR signal to the output of the switch if the first phase lags the second phase. The method may further include generating a phase detector output signal indicative of a phase difference between the second phase based on a signal present on the output of the switch.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 5, 2012
    Inventors: Jeffrey D. Ganger, Claudio G. Rey
  • Publication number: 20100105339
    Abstract: Apparatus and systems are provided for a single amplifier filter capable of a high quality factor. A filter comprises an amplifier having an amplifier input and an amplifier output, wherein the amplifier is configured to produce an output signal at the amplifier output based on a signal at the amplifier input. A first resistive element is coupled between an input node and the amplifier input, a second resistive element is coupled between a first node and the amplifier input, and a third resistive element is coupled between the amplifier output and the first node. A first capacitive element is coupled between the amplifier output and the amplifier input. The filter comprises a second node for an inverse of the output signal, wherein a second capacitive element is coupled between the first node and the second node.
    Type: Application
    Filed: October 28, 2008
    Publication date: April 29, 2010
    Applicant: Freescale Semiconductor, Inc.
    Inventor: Jeffrey D. Ganger
  • Patent number: 5985731
    Abstract: A method of forming a stacked capacitor structure in a semiconductor device, having metal electrode plates. After depositing the bottom electrode layer (26) and the dielectric layer (28) of the capacitor, a rough patterning step is carried out to roughly pattern or shape the bottom electrode layer and the dielectric layer, and to expose the underlying interlayer dielectric (18). A top electrode layer (32) is then blanket deposited, and another, more precise etching step is carried out to form the final shape of the capacitor element, while leaving behind a portion of the top electrode layer on the interlayer dielectric, which forms a metal interconnect (36). In one embodiment, the electrode layers are comprised of materials having a conductivity greater than doped silicon (either poly or monocrystalline), such as a metal.
    Type: Grant
    Filed: August 17, 1998
    Date of Patent: November 16, 1999
    Assignee: Motorola, Inc.
    Inventors: Kenneth Chia-Kun Weng, Christopher Sterling Lohn, Der-Gao Lin, Kevin Yun-Kang Wu, Jeffrey D. Ganger
  • Patent number: 5475255
    Abstract: A circuit die 100 with improved substrate noise isolation may be achieved by providing a first circuit element 102 and a second circuit element 103 on a substrate 101. The first circuit element 102 generally injects noise into the substrate 101 while the second circuit element 103 is adversely affected by noise being carried in the substrate 101. To reduce the noise interference, a noise isolation ring 104-017 may be placed around the first circuit element 102 and/or the second circuit element 103 wherein the noise isolation ring is of a conducted material. A first lead 202 is electrically connected to a first circuit element 102, a second lead 205 is electrically connected to the second circuit element 103, and a third lead 201 is electrically connected to the noise isolation ring 105, wherein the third lead 201 is electrically isolated from both the first and second leads 202 and 205.
    Type: Grant
    Filed: June 30, 1994
    Date of Patent: December 12, 1995
    Assignee: Motorola Inc.
    Inventors: Kuntal Joardar, Jeffrey D. Ganger, Sangil Park
  • Patent number: 5406220
    Abstract: Compensation for a second pole located at an internal node (107 and 108) of a two pole cascode differential amplifier (30) is accomplished by introducing a left half plane zero in the transfer function of the cascode differential amplifier (30). This is done by coupling a compensation capacitor (46, 47) between an output node (105, 106) and the internal node (107, 108) of the cascode differential amplifier (30). The compensation capacitors (46, 47) improve high frequency performance of the amplifier (30) by improving phase margin and increasing stability.
    Type: Grant
    Filed: November 1, 1993
    Date of Patent: April 11, 1995
    Assignee: Motorola Inc.
    Inventors: Robert S. Jones, III, Jeffrey D. Ganger
  • Patent number: 5391999
    Abstract: A fully differential switched-capacitor biquad low pass filter (40) includes a first stage (54), second stage (56), common-mode circuits (55, 72), and feedback transmission gates (73, 74). The first stage (54) includes a first operational amplifier (47), and the second stage (56) includes a second operational amplifier (69). Glitches, or transients, which are caused by the operational amplifiers (47, 69) operating in slew rate limit mode, are prevented from affecting the differential output signals of the filter (40) when the filter (40) is operating with a continuous time output. This is accomplished by preventing the operational amplifiers (47, 69) from operating in slew rate limit mode, or by adjusting the clock signals such that the output of the filter (40) is not coupled to an operational amplifier (47, 69) that is recovering from operation in slew rate limit mode.
    Type: Grant
    Filed: December 2, 1993
    Date of Patent: February 21, 1995
    Assignee: Motorola Inc.
    Inventors: Adrian B. Early, Jeffrey D. Ganger
  • Patent number: 5359294
    Abstract: A charge-balanced switched-capacitor circuit (50, 61) includes two capacitors (53, 54/72, 73) which are equalized by being connected in parallel during a first time period. This equalization cancels any mismatch in either capacitor (53, 54/72, 73) which would tend to affect an associated common-mode voltage. During a second time period, the two capacitors (53, 54/72, 73) are connected in series between two signal lines (42, 43). In one embodiment, the switched-capacitor circuit (50) forms a common-mode feedback sensing circuit by providing a common-mode feedback voltage to a fully-differential amplifier (41) at a common interconnection point of the two capacitors (53, 54). This embodiment draws no DC current, and thus prevents harmonic distortion of an output signal on the two signal lines when using a slew-rate limited amplifier (41). In another embodiment, the switched-capacitor circuit (61) functions as an input sampler at an input of a switched-capacitor amplifier circuit (60).
    Type: Grant
    Filed: October 5, 1993
    Date of Patent: October 25, 1994
    Assignee: Motorola, Inc.
    Inventors: Jeffrey D. Ganger, Kelvin E. McCollough, Jules D. Campbell, Jr
  • Patent number: 4857863
    Abstract: A slew rate limited output driver circuit has an output terminal which varies between two power supply voltage levels in response to an input data signal. The output signal is slew rate limited by a capacitor. In order to prevent a full range of the output voltage from being placed across the capacitor, the voltage across the capacitor is limited to only one-half the full range by forcing one electrode of the capacitor to remain at a voltage potential equal to a reference voltage which, in one form, is substantially halfway between the two power supply voltages.
    Type: Grant
    Filed: August 25, 1988
    Date of Patent: August 15, 1989
    Assignee: Motorola, Inc.
    Inventors: Jeffrey D. Ganger, Roger A. Whatley
  • Patent number: 4750078
    Abstract: An input protection circuit is provided which prevents positive and negative voltages significantly higher than a supply voltage potential from damaging operational circuitry connected to an input terminal. A bipolar transistor has current conducting electrodes connected between the supply voltage and the input terminal. A first MOS transistor is coupled to the bipolar transistor for selectively eliminating a forward biased junction between the base and collector of the bipolar transistor in response to the sign and magnitude of an input signal. A second MOS transistor is coupled to the bipolar transistor for selectively eliminating a forward biased junction between the base and emitter of the bipolar transistor in responses to the sign and magnitude of the input signal.
    Type: Grant
    Filed: June 15, 1987
    Date of Patent: June 7, 1988
    Assignee: Motorola, Inc.
    Inventors: Jeffrey D. Ganger, Jeff D. Stump
  • Patent number: 4622482
    Abstract: A driver circuit which provides an output voltage which is slew rate limited substantially independent of the value of any load which may be coupled thereto is provided. A pair of transistors of opposite conductivity type operate in push-pull fashion to drive the output voltage in response to a control signal. Capacitors are utilized to perform slew rate limiting. Additionally, each of the transistors is selectively dynamically biased to insure a substantially linear slew rate.
    Type: Grant
    Filed: August 30, 1985
    Date of Patent: November 11, 1986
    Assignee: Motorola, Inc.
    Inventor: Jeffrey D. Ganger