Patents by Inventor Jeffrey D. Macklis

Jeffrey D. Macklis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230212563
    Abstract: This invention provides methods of altering a cell including providing the cell with a nucleic acid sequence encoding a Cas1 protein and/or a Cas2 protein of a CRISPR adaptation system, providing the cell with a CRISPR array nucleic acid sequence including a leader sequence and at least one repeat sequence, wherein the cell expresses the Cas1 protein and/or the Cas2 protein and wherein the CRISPR array nucleic acid sequence is within genomic DNA of the cell or on a plasmid. Also provided are methods and systems for nucleic acid storage and in vivo molecular recordings of events into a cell.
    Type: Application
    Filed: April 11, 2022
    Publication date: July 6, 2023
    Inventors: George M. Church, Seth Lawler Shipman, Jeffrey D. Macklis, Jeffrey Matthew Nivala
  • Patent number: 11326161
    Abstract: This invention provides methods of altering a cell including providing the cell with a nucleic acid sequence encoding a Cas1 protein and/or a Cas2 protein of a CRISPR adaptation system, providing the cell with a CRISPR array nucleic acid sequence including a leader sequence and at least one repeat sequence, wherein the cell expresses the Cas1 protein and/or the Cas2 protein and wherein the CRISPR array nucleic acid sequence is within genomic DNA of the cell or on a plasmid. Also provided are methods and systems for nucleic acid storage and in vivo molecular recordings of events into a cell.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: May 10, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Church, Seth Lawler Shipman, Jeffrey D. Macklis, Jeffrey Matthew Nivala
  • Patent number: 9261496
    Abstract: Provided herein are microfluidic devices that can be used as a 3D bioassay, e.g., for drug screening, personalized medicine, tissue engineering, wound healing, and other applications. The device has a series of channels {e.g., small fluid channels) in a small polymer block wherein one or more of the channels can be filled with a biologically relevant gel, such as collagen, which is held in place by posts. As shown herein, when the device is plated with cells such as endothelial cells, new blood vessels grow in the gel, which is thick enough for the cells to grow in three dimensions. Other channels, e.g., fluid channels, allow drugs or biological material to be exposed to the 3D cell growth. Cells, such as endothelial cells, can be cultured and observed as they grow on the surface of a 3D gel scaffold, where e.g., rates of angiogenesis can be measured, as well as intervascularization and extravascularization of cancerous cells.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: February 16, 2016
    Assignees: Massachusetts Institute of Technology, The General Hospital Corporation, The Brigham and Women's Hospital, Inc., Children's Medical Center, Corp.
    Inventors: Roger Dale Kamm, Haruhiko Harry Asada, Waleed Ahmed Farahat, Ioannis K. Zervantonakis, Levi B. Wood, Chandrasekhar Kothapalli, Seok Chung, Jeffrey D. Macklis, Suzanne Tharin, Johanna Varner, Young Kum Park, Kwang Ho Lee, Le Thanh Tu Nguyen, Choong Kim
  • Publication number: 20140057311
    Abstract: Provided herein are microfluidic devices that can be used as a 3D bioassay, e.g., for drug screening, personalized medicine, tissue engineering, wound healing, and other applications. The device has a series of channels {e.g., small fluid channels) in a small polymer block wherein one or more of the channels can be filled with a biologically relevant gel, such as collagen, which is held in place by posts. As shown herein, when the device is plated with cells such as endothelial cells, new blood vessels grow in the gel, which is thick enough for the cells to grow in three dimensions. Other channels, e.g., fluid channels, allow drugs or biological material to be exposed to the 3D cell growth. Cells, such as endothelial cells, can be cultured and observed as they grow on the surface of a 3D gel scaffold, where e.g., rates of angiogenesis can be measured, as well as intervascularization and extravascularization of cancerous cells.
    Type: Application
    Filed: September 29, 2011
    Publication date: February 27, 2014
    Inventors: Roger Dale Kamm, Haruhiko Harry Asada, Waleed Ahmed Farahat, Ioannis K. Zervantonakis, Levi B. Wood, Chandrasekhar Kothapalli, Seok Chung, Jeffrey D. Macklis, Suzanne Tharin, Johanna Varner, Young Kum Park, Kwang Ho Lee, Le Thanh Tu Nguyen, Choong Kim
  • Publication number: 20120251506
    Abstract: The invention relates to methods for isolating and purifying specific types of neurons, such as cortical or other projection neurons including corticospinal motor neurons, subcerebral projection neurons, and callosal projection neurons. The invention also relates to genes that are specific for particular neuronal subtypes, and the use of such genes in genetic/molecular control of cell development. The isolated cells and subtype-specific genes also have uses in diagnostics, therapeutics, and screening assays for pharmaceutical molecules.
    Type: Application
    Filed: May 18, 2012
    Publication date: October 4, 2012
    Applicant: The General Hospital Corporation d/b/a Massachusetts General Hospital
    Inventors: Jeffrey D. Macklis, Paola Arlotta, Bradley J. Molyneaux
  • Publication number: 20120020929
    Abstract: The invention relates to methods for isolating and purifying specific types of neurons, such as cortical or other projection neurons including corticospinal motor neurons, subcerebral projection neurons, and callosal projection neurons. The invention also relates to genes that are specific for particular neuronal subtypes, and the use of such genes in genetic/molecular control of cell development. The isolated cells and subtype-specific genes also have uses in diagnostics, therapeutics, and screening assays for pharmaceutical molecules.
    Type: Application
    Filed: January 19, 2011
    Publication date: January 26, 2012
    Applicant: The General Hospital Corporation d/b/a Massachusetts General Hospital
    Inventors: Jeffrey D. Macklis, Paola Arlotta, Bradley J. Molyneaux