Patents by Inventor Jeffrey Erxmeyer

Jeffrey Erxmeyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230384687
    Abstract: An optical component comprises a first layer system exhibiting a first wavelength-dependent reflectivity curve when electromagnetic radiation impinges thereon, and at least one second layer system exhibiting a second wavelength-dependent reflectivity curve when electromagnetic radiation impinges thereon. The first layer system and the second layer system are arranged on different optical surfaces. The wavelength dependencies of the first and the second reflectivity curve at least partially compensate one another so that the relative deviation from a desired reflectivity curve which is linear or constant with respect to the wavelength is no more than 5% within the specified wavelength range for a resultant summated reflectivity for the first layer system and the at least one second layer system. An optical system, such as a microlithography projection exposure apparatus, can include such an optical component.
    Type: Application
    Filed: May 22, 2023
    Publication date: November 30, 2023
    Inventors: Jeffrey Erxmeyer, Martin Hermann, Nils Lundt, Conrad Wolke
  • Publication number: 20230367226
    Abstract: A method of forming a layer (3) on a substrate (2) made of a fluoridic material includes: depositing a coating material (9) on the substrate to form the layer and generating a plasma (12) to assist the deposition of the coating material. The plasma is formed from a gas mixture (14) containing a first gas (G) and a second gas (H), wherein the second gas has an ionization energy less than an ionization energy of the first gas, the first gas is a noble gas and the second gas is a further noble gas. An associated optical element includes: a substrate (2) composed of a fluoridic material, in particular a metal fluoride, wherein the substrate has a coating (18) having a layer (3) formed by the above method. An associated optical system, in particular for the DUV wavelength range, includes at least one such optical element.
    Type: Application
    Filed: July 28, 2023
    Publication date: November 16, 2023
    Inventors: Vitaliy SHKLOVER, Jeffrey ERXMEYER, Dirk ISFORT, Nils LUNDT, Barbara MOSER
  • Patent number: 11681236
    Abstract: In situ dynamic protection of an optical element surface against degradation includes disposing the optical element in an interior of an optical assembly for the FUV/VUV wavelength range and supplying at least one volatile fluorine-containing compound (A, B) to the interior for dynamic deposition of a fluorine-containing protective layer on the surface. The protective layer (7) is deposited on the surface layer by layer via a molecular layer deposition process. The compound includes a fluorine-containing reactant (A) supplied to the interior in a pulsed manner. A further reactant (B) is supplied to the interior also in a pulsed manner. An associated optical assembly includes an interior in which a surface is disposed, and at least one metering apparatus (123) that supplies a reactant to the interior. The metering apparatus provides a pulsed supply of the compound as a reactant (A, B) for layer by layer molecular layer deposition.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: June 20, 2023
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Vitaliy Shklover, Jeffrey Erxmeyer
  • Publication number: 20210341848
    Abstract: In situ dynamic protection of an optical element surface against degradation includes disposing the optical element in an interior of an optical assembly for the FUV/VUV wavelength range and supplying at least one volatile fluorine-containing compound (A, B) to the interior for dynamic deposition of a fluorine-containing protective layer on the surface. The protective layer (7) is deposited on the surface layer by layer via a molecular layer deposition process. The compound includes a fluorine-containing reactant (A) supplied to the interior in a pulsed manner. A further reactant (B) is supplied to the interior also in a pulsed manner. An associated optical assembly includes an interior in which a surface is disposed, and at least one metering apparatus (123) that supplies a reactant to the interior. The metering apparatus provides a pulsed supply of the compound as a reactant (A, B) for layer by layer molecular layer deposition.
    Type: Application
    Filed: July 12, 2021
    Publication date: November 4, 2021
    Inventors: Vitaliy SHKLOVER, Jeffrey ERXMEYER
  • Patent number: 10777958
    Abstract: A beam reverser module for an optical power amplifier of a laser arrangement comprises at least one reflecting surface for receiving an incoming laser beam propagating in a first direction and reflecting the incoming laser beam into a second direction different from the first direction, wherein the at least one reflecting surface is a highly reflecting surface of at least one mirror.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: September 15, 2020
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Michael Schall, Johannes Kraus, Holger Muenz, Ingrid Schuster, Willi Anderl, Ulrich Weber, Markus Bauer, Jeffrey Erxmeyer, Michel Le Maire
  • Patent number: 10642167
    Abstract: In order to make possible both good laser resistance and good antireflection properties, an optical element, in particular for UV lithography, comprising a substrate and a coating on the substrate having at least four layers, is proposed, wherein a first layer comprising a low refractive index inorganic fluoride compound is arranged on the substrate, a layer comprising an inorganic oxide-containing compound is arranged as a layer the most distant from the substrate, and at least two further layers each comprising an inorganic fluoride compound or an inorganic oxide-containing compound are arranged alternately between the first and the most distant layers.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: May 5, 2020
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Vitaliy Shklover, Michael Schall, Johannes Kraus, Oliver Gloeckl, Jeffrey Erxmeyer, Horst Feldermann, Konstantin Forcht, Ute Heinemeyer
  • Publication number: 20180196362
    Abstract: In order to make possible both good laser resistance and good antireflection properties, an optical element, in particular for UV lithography, comprising a substrate and a coating on the substrate having at least four layers, is proposed, wherein a first layer comprising a low refractive index inorganic fluoride compound is arranged on the substrate, a layer comprising an inorganic oxide-containing compound is arranged as a layer the most distant from the substrate, and at least two further layers each comprising an inorganic fluoride compound or an inorganic oxide-containing compound are arranged alternately between the first and the most distant layers.
    Type: Application
    Filed: March 6, 2018
    Publication date: July 12, 2018
    Inventors: Vitaliy Shklover, Michael Schall, Johannes Kraus, Oliver Gloeckl, Jeffrey Erxmeyer, Horst Feldermann, Konstantin Forcht, Ute Heinemeyer
  • Publication number: 20180102620
    Abstract: A beam reverser module for an optical power amplifier of a laser arrangement comprises at least one reflecting surface for receiving an incoming laser beam propagating in a first direction and reflecting the incoming laser beam into a second direction different from the first direction, wherein the at least one reflecting surface is a highly reflecting surface of at least one mirror.
    Type: Application
    Filed: December 4, 2017
    Publication date: April 12, 2018
    Inventors: Michael Schall, Johannes Kraus, Holger Muenz, Ingrid Schuster, Willi Anderl, Ulrich Weber, Markus Bauer, Jeffrey Erxmeyer, Michel Le Maire
  • Patent number: 9933711
    Abstract: In order to make possible both good laser resistance and good antireflection properties, an optical element, in particular for UV lithography, comprising a substrate and a coating on the substrate having at least four layers, is proposed, wherein a first layer comprising a low refractive index inorganic fluoride compound is arranged on the substrate, a layer comprising an inorganic oxide-containing compound is arranged as a layer the most distant from the substrate, and at least two further layers each comprising an inorganic fluoride compound or an inorganic oxide-containing compound are arranged alternately between the first and the most distant layers.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: April 3, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Vitaliy Shklover, Michael Schall, Johannes Kraus, Oliver Gloeckl, Jeffrey Erxmeyer, Horst Feldermann, Konstantin Forcht, Ute Heinemeyer
  • Patent number: 9843153
    Abstract: A beam reverser module for an optical power amplifier of a laser arrangement comprises at least one reflecting surface for receiving an incoming laser beam propagating in a first direction and reflecting the incoming laser beam into a second direction different from the first direction, wherein the at least one reflecting surface is a highly reflecting surface of at least one mirror.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: December 12, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Michael Schall, Johannes Kraus, Holger Muenz, Ingrid Schuster, Willi Anderl, Ulrich Weber, Markus Bauer, Jeffrey Erxmeyer, Michel Le Maire
  • Patent number: 9297936
    Abstract: A mirror with a dielectric coating (2) on a substrate (3), wherein the dielectric coating (2) has exactly two layer stacks (4, 5), a first layer stack (4), on the substrate, of layers (41, 42) of high refractive index and low refractive index oxides in alternating arrangement and a second layer stack (5), arranged thereon, of layers of fluorides (52) and oxides (51) in alternating arrangement, and wherein the number of fluoride layers (52) as a proportion of the total number of layers of the dielectric coating (2) is less than 0.45.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: March 29, 2016
    Assignee: Carl Zeiss Laser Optics GmbH
    Inventors: Jeffrey Erxmeyer, Alexandra Pazidis, Horst Feldermann
  • Publication number: 20150340829
    Abstract: A beam reverser module for an optical power amplifier of a laser arrangement comprises at least one reflecting surface for receiving an incoming laser beam propagating in a first direction and reflecting the incoming laser beam into a second direction different from the first direction, wherein the at least one reflecting surface is a highly reflecting surface of at least one mirror.
    Type: Application
    Filed: August 3, 2015
    Publication date: November 26, 2015
    Inventors: Michael Schall, Johannes Kraus, Holger Muenz, Ingrid Schuster, Willi Anderl, Ulrich Weber, Markus Bauer, Jeffrey Erxmeyer, Michel Le Maire
  • Publication number: 20140211181
    Abstract: In order to make possible both good laser resistance and good antireflection properties, an optical element, in particular for UV lithography, comprising a substrate and a coating on the substrate having at least four layers, is proposed, wherein a first layer comprising a low refractive index inorganic fluoride compound is arranged on the substrate, a layer comprising an inorganic oxide-containing compound is arranged as a layer the most distant from the substrate, and at least two further layers each comprising an inorganic fluoride compound or an inorganic oxide-containing compound are arranged alternately between the first and the most distant layers.
    Type: Application
    Filed: March 27, 2014
    Publication date: July 31, 2014
    Inventors: Vitaliy Shklover, Michael Schall, Johannes Kraus, Oliver Gloeckl, Jeffrey Erxmeyer, Horst Feldermann, Konstantin Forcht, Ute Heinemeyer
  • Publication number: 20100182710
    Abstract: A method for producing an optical element or part of an optical element having a base body, including:—providing a mold body (21, 1000, 2000) which has a surface corresponding to the geometry of the optical element;—depositing a layer system (7) including at least one separation layer system (15, 1010, 2010) on the surface of the mold body (21, 1000, 2000);—electroforming a base body (4, 1030, 2030) on the layer system (7); and—detaching at least the base body from the mold body (21, 1000, 2000) at the separation layer system (15, 1010, 2010).
    Type: Application
    Filed: November 25, 2009
    Publication date: July 22, 2010
    Applicant: Carl Zeiss SMT AG
    Inventors: Udo DINGER, Ulrich Bingel, Jeffrey Erxmeyer, Eral Erzin, Bernhard Weigl, Stephane Bruynooghe
  • Publication number: 20090027776
    Abstract: A method for coating an optical component comprises providing the optical component. The optical component has a surface formed with parallel, periodically structured surface sections each having a first flank and a second flank. The first flank and the second flank of each surface section are furthermore inclined with respect to one another, and the first flank is formed such that it is smaller than the second flank. The method furthermore comprises at least partly applying a coating to at least the first flank of each surface section. The surface coating has a metal layer and a dielectric multilayer and the metal layer is applied before the dielectric multilayer. The second flank is not coated or is coated with a layer thickness that is formed such that it is smaller than a layer thickness of the surface coating of the first flank.
    Type: Application
    Filed: July 2, 2008
    Publication date: January 29, 2009
    Applicant: CARL ZEISS LASER OPTICS GMBH
    Inventors: Michael Schall, Bernhard Weigl, Eral Erzin, Jeffrey Erxmeyer
  • Patent number: 7187499
    Abstract: An optical grating has a multiplicity of parallel diffraction structures, which are arranged on a support defining a base face. Each structure has a blaze flank that is inclined substantially at the Littrow angle with respect to the base face, and a back flank. Both flanks together form a reflection layer which comprises a reflective base layer and a transparent protective layer that is connected to the base layer and covers it. The protective layer on the blaze flank and the protective layer on the back flank are made of the same material. The thicknesses of the protective layers on the blaze flank and on the back flank, however, are different.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: March 6, 2007
    Assignee: Carl Zeiss Laser Optics GmbH
    Inventors: Bernd Kleemann, Stefan Weissenrieder, Jeffrey Erxmeyer, Ralf Kuschnereit
  • Publication number: 20060227425
    Abstract: An optical grating has a multiplicity of parallel diffraction structures, which are arranged on a support defining a base face. Each structure has a blaze flank that is inclined substantially at the Littrow angle with respect to the base face, and a back flank. Both flanks together form a reflection layer which comprises a reflective base layer and a transparent protective layer that is connected to the base layer and covers it. The protective layer on the blaze flank and the protective layer on the back flank are made of the same material. The thicknesses of the protective layers on the blaze flank and on the back flank, however, are different.
    Type: Application
    Filed: June 8, 2006
    Publication date: October 12, 2006
    Inventors: Bernd Kleemann, Stefan Weissenrieder, Jeffrey Erxmeyer, Ralf Kuschnereit
  • Patent number: 7092161
    Abstract: An optical grating has a multiplicity of parallel diffraction structures, which are arranged on a support defining a base face. Each structure has a blaze flank that is inclined substantially at the Littrow angle with respect to the base face, and a back flank. Both flanks together form a reflection layer which comprises a reflective base layer and a transparent protective layer that is connected to the base layer and covers it. The protective layer on the blaze flank and the protective layer on the back flank are made of the same material. The thicknesses of the protective layers on the blaze flank and on the back flank, however, are different.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: August 15, 2006
    Assignee: Carl Zeiss Laser Optics GmbH
    Inventors: Bernd Kleemann, Stefan Weissenrieder, Jeffrey Erxmeyer, Ralf Kuschnereit
  • Publication number: 20060050371
    Abstract: Antireflection multilayer coatings with only three or four layers are proposed for the production of laser resistant optical components with minimal residual reflection and high transparency for UV light in a wavelength range approx. 150 nm to approx. 250 nm at large angles of incidence in the range of approx. 70° to approx. 80°, particularly in the range between approx. 72° and approx. 76°. For incident p-polarized UV light three-layer systems can be used, in which a layer of low refractive material, in particular magnesium fluoride is arranged between two layers of high refractive material and, in the case of the specified wavelength, of minimally absorbent material, in particular of hafnium oxide or aluminum oxide. For example, this allows a residual reflection of perceptibly less than 1% to be achieved in the case of a wavelength of 248 nm at angles of incidence in the range between approx. 72° and approx. 76°.
    Type: Application
    Filed: October 18, 2005
    Publication date: March 9, 2006
    Inventors: Ralf Kuschnereit, Hans-Jochen Paul, Jeffrey Erxmeyer
  • Publication number: 20050030627
    Abstract: An optical grating has a multiplicity of parallel diffraction structures, which are arranged on a support defining a base face. Each structure has a blaze flank that is inclined substantially at the Littrow angle with respect to the base face, and a back flank. Both flanks together form a reflection layer which comprises a reflective base layer and a transparent protective layer that is connected to the base layer and covers it. The protective layer on the blaze flank and the protective layer on the back flank are made of the same material. The thicknesses of the protective layers on the blaze flank and on the back flank, however, are different.
    Type: Application
    Filed: July 7, 2004
    Publication date: February 10, 2005
    Inventors: Bernd Kleemann, Stefan Weissenrieder, Jeffrey Erxmeyer, Ralf Kuschnereit