Patents by Inventor Jeffrey Fisher

Jeffrey Fisher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11974783
    Abstract: Mechanical modifications to a spinal rod that will enable the rod to accept various coating technologies in such a way that the spinal construct's biomechanical performance is not compromised. These modifications preserve construct biomechanics in the presence of a coating and increase the bactericidal payload of an anti-infective spinal rod coating.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: May 7, 2024
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Michael A Fisher, Paul Birkmeyer, Jeffrey Sutton, Uri Herzberg, Iksoo Chun, Raymond S Shissias, Hassan Serhan
  • Publication number: 20240135337
    Abstract: Systems and methods for secure updating of allocations to user accounts are provided. In one aspect, a system includes one or more computer readable storage mediums having program instructions embodied therewith, and one or more processors configured to cause the system to identify an external institution associated with the future transfers, and initiate, based on the identified external institution, a proxy instance of a software application of the external institution to determine a set of endpoints and a set of the future transfers to the endpoints. The system is further configured to receive a request from a user to change at least one of the set of the endpoints and the set of the further transfers to the endpoints, and use the proxy instance, executing the requested change to at least one of the set of the endpoints or the set of the future transfers to the endpoints.
    Type: Application
    Filed: December 18, 2023
    Publication date: April 25, 2024
    Applicant: Plaid Inc.
    Inventors: Michael LAI, Jeffrey Zhiyuan WANG, Raymond CANO, Maxwell Dodge JOHNSON, Thomas FISHER
  • Patent number: 11913067
    Abstract: A composition for amplifying a polynucleotide is provided that includes a substrate comprising a first region and a second region. A first plurality of capture primers is coupled to the first region of the substrate. A second plurality of capture primers is coupled to the second region of the substrate. The capture primers of the second plurality of capture primers are longer than the capture primers of the first plurality of capture primers. A first plurality of orthogonal capture primers are coupled to the first region of the substrate. A second plurality of orthogonal capture primers are coupled to the second region of the substrate. The orthogonal capture primers of the second plurality of orthogonal capture primers are shorter than the orthogonal capture primers of the first plurality of orthogonal capture primers.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: February 27, 2024
    Assignees: Illumina, Inc., Illumina Cambridge Limited
    Inventors: Jeffrey Fisher, Jason Betley
  • Publication number: 20230383284
    Abstract: Provided is a method, including stretching a polynucleotide over a substrate including a plurality of equally spaced cleavage regions including a plurality of transposases, cleaving the polynucleotide with two or more of the plurality of transposases to form a plurality of polynucleotide fragments, and separating, within the plurality of polynucleotide fragments, a population of longer polynucleotide fragments from a population of shorter polynucleotide fragments. Also provided is a method including stretching a polynucleotide over a substrate including a plurality of equally spaced cleavage regions including a plurality of transposases, cleaving the polynucleotide with two or more of the plurality of transposases to form a plurality of polynucleotide fragments, and separating, within the plurality of polynucleotide fragments, a population of longer polynucleotide fragments from a population of shorter polynucleotide fragments.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Applicants: ILLUMINA, INC., ILLUMINA CAMBRIDGE LIMITED
    Inventors: Maria Candelaria Rogert BACIGALUPO, Frank STEEMERS, Jeffrey FISHER, Andrew SLATTER, Lewis KRAFT, Niall GORMLEY, M. Shane BOWEN
  • Publication number: 20230348973
    Abstract: The present disclosure is generally directed to strategies for template capture and amplification during sequencing. In some examples, a solid support is used for template capture and amplification.
    Type: Application
    Filed: March 30, 2023
    Publication date: November 2, 2023
    Applicant: ILLUMINA CAMBRIDGE LIMITED
    Inventors: Xiaoyu Ma, Mathieu Lessard-Viger, Eric Brustad, Jeffrey Fisher, Jonathan Boutell, Weihua Chang
  • Publication number: 20230313275
    Abstract: Some embodiments provided herein include methods and compositions for the detection of target ligands on an array. In some embodiments, a capture probe specifically binds to a target ligand from a sample, the location of a bead comprising the capture probe in an array is determined, and the bead is decoded to identify the capture probe and the sample. In some embodiments, a barcode is indicative of a capture probe attached to a bead; and an index is indicative of a subpopulation of beads. In some embodiments, the barcode and the index are determined by sequencing.
    Type: Application
    Filed: April 18, 2023
    Publication date: October 5, 2023
    Inventors: Darren Segale, Fiona E. Black, Jeffrey Dennis Brodin, Jeffrey Fisher, Lorenzo Berti, Siew Hong Leong
  • Patent number: 11760994
    Abstract: Provided is a method, including stretching a polynucleotide over a substrate including a plurality of equally spaced cleavage regions including a plurality of transposases, cleaving the polynucleotide with two or more of the plurality of transposases to form a plurality of polynucleotide fragments, and separating, within the plurality of polynucleotide fragments, a population of longer polynucleotide fragments from a population of shorter polynucleotide fragments. Also provided is a method including stretching a polynucleotide over a substrate including a plurality of equally spaced cleavage regions including a plurality of transposases, cleaving the polynucleotide with two or more of the plurality of transposases to form a plurality of polynucleotide fragments, and separating, within the plurality of polynucleotide fragments, a population of longer polynucleotide fragments from a population of shorter polynucleotide fragments.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: September 19, 2023
    Assignees: ILLUMINA, INC., ILLUMINA CAMBRIDGE LIMITED
    Inventors: Maria Candelaria Rogert Bacigalupo, Frank Steemers, Jeffrey Fisher, Andrew Slatter, Lewis Kraft, Niall Gormley, M. Shane Bowen
  • Patent number: 11667957
    Abstract: Some embodiments provided herein include methods and compositions for the detection of target ligands on an array. In some embodiments, a capture probe specifically binds to a target ligand from a sample, the location of a bead comprising the capture probe in an array is determined, and the bead is decoded to identify the capture probe and the sample. In some embodiments, a barcode is indicative of a capture probe attached to a bead; and an index is indicative of a subpopulation of beads. In some embodiments, the barcode and the index are determined by sequencing.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: June 6, 2023
    Assignee: Illumina, Inc.
    Inventors: Darren Segale, Fiona E. Black, Jeffrey Dennis Brodin, Jeffrey Fisher, Lorenzo Berti, Siew Hong Leong
  • Publication number: 20220356514
    Abstract: A method for detecting different analytes includes mixing different analytes with sensing probes, wherein at least some of the sensing probes are specific to respective ones of the analytes. The analytes respectively are captured by the sensing probes that are specific to those analytes. Fluorophores respectively are coupled to sensing probes that captured respective analytes. The sensing probes are mixed with beads, wherein the beads are specific to respective ones of the sensing probes, and wherein the beads include different codes identifying the analytes to which those sensing probes are specific. The sensing probes respectively are coupled to beads that are specific to those sensing probes. The beads are identified that are coupled to the sensing probes that captured analytes using at least fluorescence from the fluorophores coupled to those sensing probes. The analytes that are captured are identified.
    Type: Application
    Filed: October 12, 2020
    Publication date: November 10, 2022
    Applicants: ILLUMINA, INC., ILLUMINA SINGAPORE PTE. LTD., ILLUMINA CAMBRIDGE LIMITED
    Inventors: Sarah SHULTZABERGER, Jeffrey BRODIN, Yin Nah TEO, Suzanne ROHRBACK, Rebecca MACLEOD, Rigo PANTOJA, Allen ECKHARDT, Jeffrey FISHER, Xiangyuan YANG, Kaitlin PUGLIESE, Misha GOLYNSKIY, Xiaolin WU, Seth MCDONALD
  • Publication number: 20220186307
    Abstract: An image sensor structure includes an image layer having an array of light detectors disposed therein. A device stack is disposed over the image layer. An array of light guides is disposed in the device stack. Each light guide is associated with a light detector. An array of nanowells is disposed over the device stack. Each nanowell is associated with a first light guide of the array of light guides. A first primer set is disposed throughout a first well region of each nanowell. A second primer set is disposed throughout a second well region of each nanowell. The second well region is adjacent the first well region. The first and second primer sets are operable to attach a forward strand cluster of forward polynucleotide strands in the first well region and a reverse strand cluster of reverse polynucleotide strands in the second well region.
    Type: Application
    Filed: December 9, 2021
    Publication date: June 16, 2022
    Applicants: Illumina, Inc., Illumina Cambridge Limited
    Inventors: Lewis KRAFT, Craig Lee HETHERINGTON, Craig M. CIESLA, Michael BUREK, Jeffrey FISHER, Jason BETLEY
  • Publication number: 20220090187
    Abstract: A composition for amplifying a polynucleotide is provided that includes a substrate comprising a first region and a second region. A first plurality of capture primers is coupled to the first region of the substrate. A second plurality of capture primers is coupled to the second region of the substrate. The capture primers of the second plurality of capture primers are longer than the capture primers of the first plurality of capture primers. A first plurality of orthogonal capture primers are coupled to the first region of the substrate. A second plurality of orthogonal capture primers are coupled to the second region of the substrate. The orthogonal capture primers of the second plurality of orthogonal capture primers are shorter than the orthogonal capture primers of the first plurality of orthogonal capture primers.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 24, 2022
    Applicants: ILLUMINA, INC., ILLUMINA CAMBRIDGE LIMITED
    Inventors: Jeffrey Fisher, Jason Betley
  • Publication number: 20220002711
    Abstract: Provided is a method, including stretching a polynucleotide over a substrate including a plurality of equally spaced cleavage regions including a plurality of transposases, cleaving the polynucleotide with two or more of the plurality of transposases to form a plurality of polynucleotide fragments, and separating, within the plurality of polynucleotide fragments, a population of longer polynucleotide fragments from a population of shorter polynucleotide fragments. Also provided is a method including stretching a polynucleotide over a substrate including a plurality of equally spaced cleavage regions including a plurality of transposases, cleaving the polynucleotide with two or more of the plurality of transposases to form a plurality of polynucleotide fragments, and separating, within the plurality of polynucleotide fragments, a population of longer polynucleotide fragments from a population of shorter polynucleotide fragments.
    Type: Application
    Filed: June 25, 2021
    Publication date: January 6, 2022
    Applicants: ILLUMINA, INC., ILLUMINA CAMBRIDGE LIMITED
    Inventors: Maria Candelaria Rogert BACIGALUPO, Frank STEEMERS, Jeffrey FISHER, Andrew SLATTER, Lewis KRAFT, Niall GORMLEY, M. Shane BOWEN
  • Publication number: 20200131570
    Abstract: Some embodiments provided herein include methods and compositions for the detection of target ligands on an array. In some embodiments, a capture probe specifically binds to a target ligand from a sample, the location of a bead comprising the capture probe in an array is determined, and the bead is decoded to identify the capture probe and the sample. In some embodiments, a barcode is indicative of a capture probe attached to a bead; and an index is indicative of a subpopulation of beads. In some embodiments, the barcode and the index are determined by sequencing.
    Type: Application
    Filed: October 23, 2019
    Publication date: April 30, 2020
    Inventors: Lorenzo Berti, Fiona E. Black, Jeffrey Dennis Brodin, Jeffrey Fisher
  • Patent number: 10045071
    Abstract: A video stream demultiplxer receives video streams comprising a selected current content channel and one or more adjacent content channels. Time stamp management is concurrently performed on the adjacent content channels while decoding the selected current content channel. Timing information such as Decoding Time Stamp (DTS) and Presentation Time Stamp (PTS) values, and/or random access points (RAPs) may be determined for pictures stored for the selected current content channel and the adjacent content channels. The determined timing information is utilized to determine a Program Clock Reference (PCR) value for each of the selected current channel and the adjacent channels for channel monitoring. A timebase, derived from a PCR rate that is determined based on the determined PCR value, is determined for decoding the selected current content channel. An adjacent content channel, which is primed during decoding of the selected current content channel, may be directly decoded for display if selected.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: August 7, 2018
    Assignee: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE, LTD.
    Inventors: Alex Pelts, Jeffrey Fisher, David Erickson, Jong-Hon Theodore Na
  • Patent number: 9384179
    Abstract: Systems and methods are provided for evaluating composition of a first file representing a document to be evaluated. An evaluation method transforms the first file to a second file. The second file includes a plurality of objects corresponding to the composition of the first file. The evaluation method also determines parameters based on the plurality of objects; evaluates the parameters based on a plurality of composition rules provided by a rule engine; generates evaluation findings and stores the evaluation findings; and generates an evaluation conclusion based on the evaluation findings. The evaluation conclusion indicates compliance of the document according to the composition rules.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: July 5, 2016
    Assignee: American Chemical Society
    Inventors: Jeffrey Fisher, David Paul Levy, John Sullivan
  • Publication number: 20150373400
    Abstract: A video stream demultiplxer receives video streams comprising a selected current content channel and one or more adjacent content channels. Time stamp management is concurrently performed on the adjacent content channels while decoding the selected current content channel. Timing information such as Decoding Time Stamp (DTS) and Presentation Time Stamp (PTS) values, and/or random access points (RAPs) may be determined for pictures stored for the selected current content channel and the adjacent content channels. The determined timing information is utilized to determine a Program Clock Reference (PCR) value for each of the selected current channel and the adjacent channels for channel monitoring. A timebase, derived from a PCR rate that is determined based on the determined PCR value, is determined for decoding the selected current content channel. An adjacent content channel, which is primed during decoding of the selected current content channel, may be directly decoded for display if selected.
    Type: Application
    Filed: August 31, 2015
    Publication date: December 24, 2015
    Inventors: Alex Pelts, Jeffrey Fisher, David Erickson, Jong-Hon Theodore Na
  • Publication number: 20150282317
    Abstract: In some embodiments, flat electrical contact pads may be fabricated along a routed edge face of a printed wiring board (PWB). Some embodiments of the edge pads may, for example, be perpendicular to a plane of the printed wiring board. In some embodiments, the edge pads may be of a specified length and/or width. Some embodiments of the edge pads may, for example, have a surface finish suitable for soldering and/or for direct contact interconnections. In some embodiments, the edge pads may, for example, be configured for electrical connection to an adjoining device (e.g., PWB) with mating pads to form a tiled array configuration of interconnected devices (e.g., PWBs).
    Type: Application
    Filed: March 28, 2014
    Publication date: October 1, 2015
    Applicant: Lockheed Martin Corporation
    Inventors: Stephen Gonya, Timothy J. Dougherty, Jeffrey Fisher, Michael Hochdoerfer, Kenneth R. Twigg, Eugene J. Urda
  • Patent number: 9137502
    Abstract: A video stream demultiplexer receives video streams including a selected current content channel and one or more adjacent content channels. Time stamp management may be concurrently performed on the adjacent content channels while decoding the selected current content channel. Timing information such as Decoding Time Stamp, Presentation Time Stamp values, or random access points may be determined for pictures of the selected current content channel and the adjacent content channels. The determined timing information may be utilized to determine a Program Clock Reference value for the selected current channel and the adjacent channels. A timebase, derived from a PCR rate, may be determined for decoding the selected current content channel. An adjacent content channel, which is primed during decoding of the selected current content channel, may be directly decoded for display if selected.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: September 15, 2015
    Assignee: BROADCOM CORPORATION
    Inventors: Alex Pelts, Jeffrey Fisher, David Erickson, Jong-Hon Theodore Na
  • Patent number: 8737434
    Abstract: An IP network includes a central entity and at least one customer premises equipment (CPE) device. The central entity generates a program clock reference (PCR) clock and provides audio-visual packets to a CPE based on the PCR clock. The CPE sets a first clock based on the PCR clock for decoding operations. The CPE sets a second clock that is independent from the first clock for audio and video output operations. For example, the CPE can process the audio-visual packets using the second clock.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: May 27, 2014
    Assignee: Broadcom Corporation
    Inventors: Jeffrey Fisher, Brian Schoner, Rajesh S. Mamidwar
  • Patent number: 8720722
    Abstract: The presently disclosed device provides a method and means for ensuring that containers of all types and sizes are vented or purged to atmospheric or environmental conditions upon the interior or exterior of the container reaching a critical temperature pressure, or humidity. Specifically, the presently disclosed invention integrates shape memory polymer (SMP) based, thermally activated fasteners into the venting systems. The result is a venting system that increases munitions safety without compromising the venting effectiveness, structural integrity, or the required bullet/fragment impact resistance requirements of the system.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: May 13, 2014
    Assignee: Cornerstone Research Group, Inc.
    Inventors: Matthew Brian Sunday, Michael Jeffrey Fisher