Patents by Inventor Jeffrey Fredberg

Jeffrey Fredberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220177422
    Abstract: Disclosed herein is a class of molecules termed remodilins that are effective in treating asthma, pulmonary fibrosis, and associated disorders. The molecules ameliorate asthma and pulmonary fibrosis symptoms by various mechanisms, including inhibiting airway smooth muscle contractile protein accumulation, reducing airway constrictor hyperresponsiveness, inhibiting bronchial fibroblast transformation into myofibroblasts, and/or treating or preventing airway or pulmonary fibrosis.
    Type: Application
    Filed: April 2, 2020
    Publication date: June 9, 2022
    Applicants: The University of Chicago, The United States of America,as Represented by the Secretary, Department of Health and Human Servic, President and Fellows of Harvard College, IIT Research Institute, Beth Israel Deaconess Medical Center, Inc.
    Inventors: Julian SOLWAY, Nickolai DULIN, Diane Luci, David MALONEY, Chan Young PARK, Jeffrey FREDBERG, David MCCORMICK, Ramaswamy KRISHNAN
  • Publication number: 20220040207
    Abstract: Disclosed herein is a class of molecules termed remodilins that inhibit serum response factor (SRF). By inhibiting SRF, a number of downstream pathways can be targeted. The remodilins can be used to treat glaucoma, inhibit tumor cell growth, inhibit tumor metastasis, inhibit hypoxia-induced response, and/or reduce cellular metabolism.
    Type: Application
    Filed: April 2, 2020
    Publication date: February 10, 2022
    Applicants: The University of Chicago, The United States of America as Represented by the Secretary Department of Health and Human Services, President and Fellows of Harvard College, IIT Research Institute, Beth Israel Deaconess Medical Center, Inc.
    Inventors: Julian SOLWAY, Nickolai DULIN, Marsha ROSNER, Gokhan MUTLU, Diane LUCI, David MALONEY, Chan Young PARK, Jeffrey FREDBERG, David MCCORMICK, Ramaswamy KRISHNAN
  • Patent number: 8993312
    Abstract: Embodiments provide techniques for measuring and characterizing the dynamics of cell traction forces. Tunable elastic gel substrates can be disposed in multi-well plates. The gels can be of a uniform predetermined thickness. A multi-well plate can be loaded with gels of different shear moduli. An array of punch indenters can be attached to a loading platen such that the each indenter is aligned to a gel substrate. The indenters can apply tensile or compressive strains to the gel substrates. The magnitude, duration, and frequency of the strain can be controlled by a motor assembly coupled to a control system. The apparatus can be disposed in an incubator for long term cell culture experiments. The cell culture can be observed while a strain is applied. A ring-shaped indenter can be mounted on a microscope, coaxial to the objective lens, and lowered by a calibrated amount onto the underlying gel.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: March 31, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Ramaswamy Krishnan, Chan Young Park, Jeffrey Fredberg, Fei Liu, Justin Mih, Daniel Tschumperlin
  • Publication number: 20110091922
    Abstract: Embodiments provide techniques for measuring and characterizing the dynamics of cell traction forces. Tunable elastic gel substrates can be disposed in multi-well plates. The gels can be of a uniform predetermined thickness. A multi-well plate can be loaded with gels of different shear moduli. An array of punch indenters can be attached to a loading platen such that the each indenter is aligned to a gel substrate. The indenters can apply tensile or compressive strains to the gel substrates. The magnitude, duration, and frequency of the strain can be controlled by a motor assembly coupled to a control system. The apparatus can be disposed in an incubator for long term cell culture experiments. The cell culture can be observed while a strain is applied. A ring-shaped indenter can be mounted on a microscope, coaxial to the objective lens, and lowered by a calibrated amount onto the underlying gel.
    Type: Application
    Filed: August 28, 2008
    Publication date: April 21, 2011
    Inventors: Ramaswamy Krishnan, Chan Young Park, Jeffrey Fredberg, Fei Liu, Justin Mih, Daniel Tschumperlin
  • Patent number: 5746699
    Abstract: Single hand supportable and operable apparatus for providing an output signal characteristic of the morphology of a respiratory tract includes an acoustic pipe for exchanging acoustical energy with the tract. The pipe has an open first end in communication with an opening in the respiratory tract. A transducer, such as a loudspeaker, is coupled to the pipe for launching acoustical energy into the pipe, producing an incident wave towards the opening in the tract and a reflected wave to form a transient wave field in the pipe representative of the morphology of the tract. Preferably, first and second pressure wave sensing transducers, such as microphones, mounted along the length of the pipe in spaced relationship provide first and second transduced signals representative of the transient wave field.
    Type: Grant
    Filed: December 18, 1996
    Date of Patent: May 5, 1998
    Assignees: Hood Laboratories, Biomechanics, Inc.
    Inventors: Jeffrey Fredberg, Gary Glass, John Lehr, Bruno Louis
  • Patent number: 5666960
    Abstract: Single hand supportable and operable apparatus for providing an output signal characteristic of the morphology of a respiratory tract includes an acoustic pipe for exchanging acoustical energy with the tract. The pipe has an open first end in communication with an opening in the respiratory tract. A transducer, such as a loudspeaker, is coupled to the pipe for launching acoustical energy into the pipe, producing an incident wave towards the opening in the tract and a reflected wave to form a transient wave field in the pipe representative of the morphology of the tract. Preferably, first and second pressure wave sensing transducers, such as microphones, mounted along the length of the pipe in spaced relationship provide first and second transduced signals representative of the transient wave field.
    Type: Grant
    Filed: March 31, 1994
    Date of Patent: September 16, 1997
    Assignees: Hood Laboratories, Biomechanics Inc.
    Inventors: Jeffrey Fredberg, Gary Glass, John Lehr, Bruno Louis