Patents by Inventor Jeffrey G. Hippler

Jeffrey G. Hippler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9598536
    Abstract: A process for polymerizing an epoxide monomer, preferably ethylene oxide, comprising carrying out the process in the presence of a catalytically active amount of a catalyst obtainable by a preparation process comprising admixing at least one alkaline earth metal, liquid ammonia, an alkylene oxide, which is optionally substituted by aromatic radicals, and an organic nitrile having at least one acidic hydrogen atom to prepare a slurry of modified alkaline earth hexammine in liquid ammonia; continuously transferring the slurry of modified alkaline earth hexammine in liquid ammonia into a stripper vessel and continuously evaporating ammonia, thereby accumulating the modified catalyst in the stripper vessel; and upon complete transfer of the slurry of modified alkaline earth hexammine into the stripper vessel, aging the modified catalyst to obtain the final polymerization catalyst; and a polymer obtainable by this process.
    Type: Grant
    Filed: January 21, 2013
    Date of Patent: March 21, 2017
    Inventors: John R. Simms, John M. Kenney, Robert S. Landon, Jeffrey G. Hippler
  • Publication number: 20150166724
    Abstract: A process for polymerizing an epoxide monomer, preferably ethylene oxide, comprising carrying out the process in the presence of a catalytically active amount of a catalyst obtainable by a preparation process comprising admixing at least one alkaline earth metal, liquid ammonia, an alkylene oxide, which is optionally substituted by aromatic radicals, and an organic nitrile having at least one acidic hydrogen atom to prepare a slurry of modified alkaline earth hexammine in liquid ammonia; continuously transferring the slurry of modified alkaline earth hexammine in liquid ammonia into a stripper vessel and continuously evaporating ammonia, thereby accumulating the modified catalyst in the stripper vessel; and upon complete transfer of the slurry of modified alkaline earth hexammine into the stripper vessel, aging the modified catalyst to obtain the final polymerization catalyst; and a polymer obtainable by this process.
    Type: Application
    Filed: January 21, 2013
    Publication date: June 18, 2015
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: John R. Simms, John M. Kenney, Robert S. Landon, Jeffrey G. Hippler
  • Patent number: 8957256
    Abstract: Improved methods for making ethers. In particular, an alkoxide can be more effectively converted into an ether by reaction with a hydrocarbyl halide in the presence of a substantial excess of a hygroscopic base such as NaOH. When present in such an unconventional excess, the base serves multiple functions. As a consequence, the alkoxide is extensively converted to the desired ether rapidly at excellent yields. The reaction environment also aids later product isolation. The use of the NaOH rather than Na metal allows the ether product to be separated from water soluble impurities such as salt products, left over base, left over hydrocarbyl halide, formates, etc. by liquid-liquid extraction among aqueous and organic phases.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: February 17, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Stephen W. King, Richard R. Mitford, Jeffrey G. Hippler
  • Patent number: 8569530
    Abstract: Various embodiments of the present invention are directed to processes and methods for converting lipids comprising fatty acids into fatty esters. According to various embodiments of the invention, the saponifiable lipids are reacted with a base to form alkali soaps. The alkali soaps are then reacted with an acid to form fatty esters. Both the base reaction and the acid reaction may occur in the presence of one or more alcohols. Following the acid reaction, a solvent may be added to effect a separation of the fatty esters, which may then be recovered.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: October 29, 2013
    Assignee: Aurora Algae, Inc.
    Inventors: Jeffrey G. Hippler, Andy Thompson, Lea Dulatas, Louis A. Kapicak
  • Publication number: 20130274490
    Abstract: Various embodiments of the present invention are directed to processes and methods for extracting lipids from a variety of algae species. An exemplary method comprises treating the algae with a mixture of at least one nonpolar solvent and at least one polar solvent heated to temperature at which the nonpolar solvent and the polar solvent are miscible.
    Type: Application
    Filed: April 11, 2012
    Publication date: October 17, 2013
    Inventors: Jeffrey G. Hippler, Megan Hippler, Nathaniel Nicks
  • Patent number: 8541632
    Abstract: A process and apparatus for producing chlorohydrin comprising reacting a multihydroxylated-aliphatic hydrocarbon-containing stream with a stream of a first effluent exiting from a hydrochlorination reactor in at least one vessel wherein the vessel exhibits a plug flow residence time characteristic, under conditions such that at least a portion of any unreacted HCl component present in the first effluent is reacted with the multihydroxylated-aliphatic hydrocarbon present in the multihydroxylated aliphatic hydrogen-containing stream to from an amount of monochlorohydrin in a stream of a second effluent exiting from the plug flow vessel; recovering said second effluent; and then optionally using the second effluent from the plug flow reactor in a subsequent processing operation.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: September 24, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Anil J. Mehta, Danil Tirtowidjojo, Bruce D. Hook, John R. Briggs, Jeffrey G. Hippler
  • Patent number: 8236975
    Abstract: A process for converting a crude glycerol, crude mixtures of naturally derived multihydroxylated-aliphatic hydrocarbons or esters thereof to a chlorohydrin, by contacting the crude glycerol, crude mixtures of naturally derived multihydroxylated-aliphatic hydrocarbons or esters thereof starting material with a source of a superatmospheric partial pressure of hydrogen chloride for a sufficient time and at a sufficient temperature, and wherein such contracting step is carried out without substantial removal of water, to produce the desired chlorohydrin product; wherein the desired product or products can be made in high yield without substantial formation of undesired overchlorinated byproducts; wherein said crude glycerol, said ester of crude glycerol, or mixture thereof is derived from a renewable raw material. Chlorohydrins made by the process of the present invention are useful in preparing epoxides such as epichlorohydrins.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: August 7, 2012
    Inventors: Bruce D. Hook, John Briggs, Robert M. Campbell, William J. Kruper, David J. Schreck, Richard D. Varjian, Jeffrey G. Hippler
  • Patent number: 8088957
    Abstract: The present invention relates to a process for converting a multihydroxylated-aliphatic hydrocarbon or ester thereof to a chlorohydrin, by contacting the multihydroxylated-aliphatic hydrocarbon or ester thereof starting material with a source of a superatmospheric partial pressure of hydrogen chloride for a sufficient time and at a sufficient temperature, and wherein such contracting step is carried out without substantial removal of water, to produce the desired chlorohydrin product; wherein the desired product or products can be made in high yield without substantial formation of undesired overchlorinated byproducts. In addition, certain catalysts of the present invention may be used in the present process at superatmospheric, atmospheric and subatmospheric pressure conditions with improved results.
    Type: Grant
    Filed: July 18, 2005
    Date of Patent: January 3, 2012
    Inventors: William J. Kruper, Jr., David J. Schreck, Kenneth L. Kearns, Richard D. Varjian, Mark E. Jones, Robert M. Campbell, Bruce D. Hook, John R. Briggs, Jeffrey G. Hippler
  • Publication number: 20110178315
    Abstract: A process for converting a crude glycerol, crude mixtures of naturally derived multihydroxylated-aliphatic hydrocarbons or esters thereof to a chlorohydrin, by contacting the crude glycerol, crude mixtures of naturally derived multihydroxylated-aliphatic hydrocarbons or esters thereof starting material with a source of a superatmospheric partial pressure of hydrogen chloride for a sufficient time and at a sufficient temperature, and wherein such contracting step is carried out without substantial removal of water, to produce the desired chlorohydrin product; wherein the desired product or products can be made in high yield without substantial formation of undesired overchlorinated byproducts; wherein said crude glycerol, said ester of crude glycerol, or mixture thereof is derived from a renewable raw material. Chlorohydrins made by the process of the present invention are useful in preparing epoxides such as epichlorohydrins.
    Type: Application
    Filed: February 9, 2011
    Publication date: July 21, 2011
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Bruce D. Hook, John Briggs, Robert M. Campbell, William J. Kruper, JR., David J. Schreck, Richard D. Varjian, Jeffrey G. Hippler
  • Patent number: 7910781
    Abstract: A process for converting a crude glycerol, crude mixtures of naturally derived multihydroxylated-aliphatic hydrocarbons or esters thereof to a chlorohydrin, by contacting the crude glycerol, crude mixtures of naturally derived multihydroxylated-aliphatic hydrocarbons or esters thereof starting material with a source of a superatmospheric partial pressure of hydrogen chloride for a sufficient time and at a sufficient temperature, and wherein such contracting step is carried out without substantial removal of water, to produce the desired chlorohydrin product; wherein the desired product or products can be made in high yield without substantial formation of undesired overchlorinated byproducts; wherein said crude glycerol, said ester of crude glycerol, or mixture thereof is derived from a renewable raw material. Chlorohydrins made by the process of the present invention are useful in preparing epoxides such as epichlorohydrins.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: March 22, 2011
    Inventors: Bruce D. Hook, John Briggs, Robert M. Campbell, William J. Kruper, Jr., David J. Schreck, Richard D. Varjian, Jeffrey G. Hippler
  • Publication number: 20110004027
    Abstract: A process and apparatus for producing chlorohydrin comprising reacting a multihydroxylated-aliphatic hydrocarbon-containing stream with a stream of a first effluent exiting from a hydrochlorination reactor in at least one vessel wherein the vessel exhibits a plug flow residence time characteristic, under conditions such that at least a portion of any unreacted HCl component present in the first effluent is reacted with the multihydroxylated-aliphatic hydrocarbon present in the multihydroxylated aliphatic hydrogen-containing stream to from an amount of monochlorohydrin in a stream of a second effluent exiting from the plug flow vessel; recovering said second effluent; and then optionally using the second effluent from the plug flow reactor in a subsequent processing operation.
    Type: Application
    Filed: April 11, 2008
    Publication date: January 6, 2011
    Inventors: Anil J. Mehta, Danil Tirtowidjojo, Bruce D. Hook, John R. Briggs, Jeffrey G. Hippler
  • Publication number: 20100280277
    Abstract: Improved methods for making ethers. In particular, an alkoxide can be more effectively converted into an ether by reaction with a hydrocarbyl halide in the presence of a substantial excess of a hygroscopic base such as NaOH. When present in such an unconventional excess, the base serves multiple functions. As a consequence, the alkoxide is extensively converted to the desired ether rapidly at excellent yields. The reaction environment also aids later product isolation. The use of the NaOH rather than Na metal allows the ether product to be separated from water soluble impurities such as salt products, left over base, left over hydrocarbyl halide, formates, etc. by liquid-liquid extraction among aqueous and organic phases.
    Type: Application
    Filed: September 22, 2008
    Publication date: November 4, 2010
    Applicant: DOW GLOBAL TECHNOLOGIES INC.
    Inventors: Stephen W. King, Richard R. Mitford, Jeffrey G. Hippler
  • Patent number: 7663002
    Abstract: A non-aqueous hydroformylation process with liquid catalyst recycle involving a hydroformylation step and one or more stages of phase separation to recover a high molecular weight aldehyde product with efficient recovery of rhodium catalyst. The process includes a hydroformylation step to prepare a non-aqueous hydroformylation reaction product composition comprising one or more aldehyde products, one or more conjugated polyolefins, a rhodium-organophosphorus ligand complex, free organophosphorus ligand, and an organic solubilizing agent for said complex and said free ligand, and thereafter one or more stages of phase separation using added water under a carbon monoxide gas, hydrogen gas, or a mixture thereof. The process requires a specific range of total pressure for the hydroformylation, a specific range of total pressure for at least one of the separation stages, and a minimum sum of the total pressure of the hydroformylation step and the total pressure of the separation stage containing said gas.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: February 16, 2010
    Assignee: Dow Global Technologies, Inc.
    Inventors: Wei-Jun Peng, Kurt D. Olson, Donald L. Morrison, Brian M. Roesch, Donald L. Bunning, Jeffrey G. Hippler, Vincent J. Stricker
  • Publication number: 20090118548
    Abstract: A non-aqueous hydroformylation process with liquid catalyst recycle involving a hydroformylation step and one or more stages of phase separation to recover a high molecular weight aldehyde product with efficient recovery of rhodium catalyst. The process includes a hydroformylation step to prepare a non-aqueous hydroformylation reaction product composition comprising one or more aldehyde products, one or more conjugated polyolefins, a rhodium-organophosphorus ligand complex, free organophosphorus ligand, and an organic solubilizing agent for said complex and said free ligand, and thereafter one or more stages of phase separation using added water under a carbon monoxide gas, hydrogen gas, or a mixture thereof. The process requires a specific range of total pressure for the hydroformylation, a specific range of total pressure for at least one of the separation stages, and a minimum sum of the total pressure of the hydroformylation step and the total pressure of the separation stage containing said gas.
    Type: Application
    Filed: April 17, 2007
    Publication date: May 7, 2009
    Inventors: Wei-Jun Peng, Kurt D. Olson, Donald L. Morrison, Brian M. Roesch, Donald L. Bunning, Jeffrey G. Hippler, Vincent J. Stricker