Patents by Inventor Jeffrey G. Lake

Jeffrey G. Lake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10381664
    Abstract: An exemplary fuel cell component includes a plate having a plurality of channels. At least a first one of the channels is configured differently than others of the channels so that the first channel provides a first cooling capacity to a selected portion of the plate. The others of the channels provide a second, lesser cooling capacity to at least one other portion of the plate.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: August 13, 2019
    Assignee: AUDI AG
    Inventors: Sushant S. Bhadange, Jeffrey G. Lake
  • Patent number: 10199673
    Abstract: An end plate assembly (38) includes a current collector (40), an electrically non-conductive pressure plate (42), and a tapered spring plate (72). The tapered spring plate (72) includes a thick mid-section (96) and tapered, thin tie rod extensions (74, 76) that extend from the mid-section (96) over deflection cavities (50, 52) in the pressure plate (42). Tie rod nut assemblies (90, 94) apply a load follow-up through the tie-rod extensions (74, 76) to permit limited expansion and contraction of the fuel cells (32). A mid-section of (96) of the spring plate (72) overlies a substantial portion of an upper surface (46) of the pressure plate (42). Because the mid-section (96) is large and thick and because the tie-rod extensions (74,76) are tapered and thin, the entire end plate assembly (38) may be efficiently thin and apply an even load follow-up to the fuel cell stack (30).
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: February 5, 2019
    Assignee: AUDI AG
    Inventors: Christopher J. Carnevale, Jeffrey G. Lake
  • Publication number: 20170098852
    Abstract: An end plate assembly (38) includes a current collector (40), an electrically non-conductive pressure plate (42), and a tapered spring plate (72). The tapered spring plate (72) includes a thick mid-section (96) and tapered, thin tie rod extensions (74, 76) that extend from the mid-section (96) over deflection cavities (50, 52) in the pressure plate (42). Tie rod nut assemblies (90, 94) apply a load follow-up through the tie-rod extensions (74, 76) to permit limited expansion and contraction of the fuel cells (32). A mid-section of (96) of the spring plate (72) overlies a substantial portion of an upper surface (46) of the pressure plate (42). Because the mid-section (96) is large and thick and because the tie-rod extensions (74,76) are tapered and thin, the entire end plate assembly (38) may be efficiently thin and apply an even load follow-up to the fuel cell stack (30).
    Type: Application
    Filed: March 21, 2014
    Publication date: April 6, 2017
    Inventors: Christopher J. CARNEVALE, Jeffrey G. LAKE
  • Patent number: 9425470
    Abstract: An example energy dissipation device for controlling a fuel cell fluid includes a conduit extending in longitudinal direction between a first opening and a second opening. A flow control insert is configured to be received within the conduit. The flow control insert is configured to cause a fuel cell fluid to flow helically relative to the longitudinal direction.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: August 23, 2016
    Assignee: Doosan Fuel Cell America, Inc.
    Inventors: Jeffrey G. Lake, Yu Guo, Xiangyang Deng, Ying Shi, Lei Yu, George S. Hirko, Vicky Zhang, Robin J. Guthrie, Sushant S. Bhadange, Andrew Joseph Melough
  • Patent number: 9147895
    Abstract: Ejectors (22, 59) are configured to receive fresh fuel gas at the motive inlet (27, 60) and to receive fuel recycle gas at the suction inlet (29, 64, 65). Each ejector is disposed either a) within a fuel inlet/outlet manifold (13, 109) or adjacent to and integral with the fuel inlet/outlet manifold. The ejector draws fuel recycle gas directly from the fuel outlet manifold and, after mixing with fresh fuel, is expanded (34, 76) to lower the pressure and is then fed directly into the fuel inlet manifold (14, 80, 109). The ejector may be within an external manifold (13, 92) or an internal manifold (109). The ejector (59) may be formed of perforations clear through a plate (80), which is closed on either side by other plates (83, 85), or the ejector may be formed by suitable sculpture of fuel cells (12) having internal fuel inlet (109) and fuel outlet (15) manifolds.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: September 29, 2015
    Assignee: Audi AG
    Inventors: Matthew P. Wilson, Christopher John Carnevale, Jeffrey G. Lake, Michael D. Harrington
  • Publication number: 20150214560
    Abstract: An exemplary fuel cell component includes a plate having a plurality of channels. At least a first one of the channels is configured differently than others of the channels so that the first channel provides a first cooling capacity to a selected portion of the plate. The others of the channels provide a second, lesser cooling capacity to at least one other portion of the plate.
    Type: Application
    Filed: August 30, 2012
    Publication date: July 30, 2015
    Applicant: Ballard Power Systems Inc.
    Inventors: Sushant S. Bhadange, Jeffrey G. Lake
  • Publication number: 20140051001
    Abstract: An example energy dissipation device for controlling a fuel cell fluid includes a conduit extending in longitudinal direction between a first opening and a second opening. A flow control insert is configured to be received within the conduit. The flow control insert is configured to cause a fuel cell fluid to flow helically relative to the longitudinal direction.
    Type: Application
    Filed: May 2, 2011
    Publication date: February 20, 2014
    Applicant: CLEAREDGE POWER CORPORATION
    Inventors: Jeffrey G. Lake, Yu Guo, Xiangyang Deng, Ying Shi, Lei Yu, George S. Hirko, Vicky Zhang, Robin J. Guthrie, Sushant S. Bhadange, Andrew Joseph Melough
  • Publication number: 20130230789
    Abstract: An exemplary fuel cell assembly includes a cell stack having a plurality of cells. The cell stack has an outermost plate at each of two opposite ends of the cell stack. An end plate is adjacent the outermost plate at each of the opposite ends. A plurality of anti-rotation members at each of the opposite ends prevent relative movement between the outermost plates and the end plates. The anti-rotation members at each end are at least partially received into the end plate at the corresponding end. The anti-rotation members at each end are only partially received into the outermost plate at the corresponding end without extending through the outermost plate.
    Type: Application
    Filed: November 24, 2010
    Publication date: September 5, 2013
    Applicant: UTC POWER CORPORATION
    Inventors: Christopher John Carnevale, Jeffrey G. Lake, Michael D. Harrington
  • Patent number: 8354197
    Abstract: A fuel cell stack (30) includes an integrated end plate assembly having a current collector (40) secured adjacent and end cell (36) of the stack, a pressure plate (42) secured adjacent the current collector (40), and a backbone (60) secured within a backbone-support plane (44) defined within the plate (42). Tie rod ends (62, 64, 66, 68) of the backbone (60) extend over a gap (84) defined between the backbone-support plane (44) and a deflection plane (50) defined within the pressure plate (42) so that the tie rod ends deflect within the gap (84) upon tightening of tie rods (78, 80). Deflection of the backbone enables the backbone (60) to permit limited expansion of the fuel cell stack (30) during operation, and the backbone (60) has adequate flexural strength to prohibit expansion of the stack (30) beyond operating dynamic limits of the stack (30).
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: January 15, 2013
    Assignee: UTC Fuel Cells, LLC
    Inventors: Jeffrey G. Lake, Leonard A. Bach, Pedro Inigo, Evan C. Rege, Chris Vargas, Stephen P Victor
  • Publication number: 20120244455
    Abstract: Ejectors (22, 59) are configured to receive fresh fuel gas at the motive inlet (27, 60) and to receive fuel recycle gas at the suction inlet (29, 64, 65). Each ejector is disposed either a) within a fuel inlet/outlet manifold (13, 109) or adjacent to and integral with the fuel inlet/outlet manifold. The ejector draws fuel recycle gas directly from the fuel outlet manifold and, after mixing with fresh fuel, is expanded (34, 76) to lower the pressure and is then fed directly into the fuel inlet manifold (14, 80, 109). The ejector may be within an external manifold (13, 92) or an internal manifold (109). The ejector (59) may be formed of perforations clear through a plate (80), which is closed on either side by other plates (83, 85), or the ejector may be formed by suitable sculpture of fuel cells (12) having internal fuel inlet (109) and fuel outlet (15) manifolds.
    Type: Application
    Filed: December 8, 2009
    Publication date: September 27, 2012
    Inventors: Matthew P. Wilson, Christopher John Carnevale, Jeffrey G. Lake, Michael D. Harrington
  • Publication number: 20120178009
    Abstract: A fuel cell plate includes a structure having opposing sides bounded by a periphery providing at least one edge. Gas flow channels are arranged on the one side and arranged within a perimeter that is spaced inboard from the periphery to provide a first gasket surface between the perimeter and the periphery. Inlet and outlet flow channels are arranged on the other side and extend to the periphery and are configured to provide gas at the at least one edge. Holes extend through the structure and fluidly interconnect the inlet and outlet flow channels to the gas flow channels. In one example, the fuel cell plate is a water transport plate in a fuel cell having external manifolds that supply fluid to the plate.
    Type: Application
    Filed: November 9, 2009
    Publication date: July 12, 2012
    Inventors: Robert A. Love, Jeffrey G. Lake
  • Publication number: 20110020722
    Abstract: A device for use in a fuel cell includes a bipolar plate having flow field channels, a manifold fluidly connected with the flow field channels for conveying a reactant gas, and a sump fluidly connected with the manifold.
    Type: Application
    Filed: April 11, 2008
    Publication date: January 27, 2011
    Inventors: Jeffrey G. Lake, David A. Niezelski
  • Publication number: 20100167156
    Abstract: A fuel cell stack (30) includes an integrated end plate assembly having a current collector (40) secured adjacent and end cell (36) of the stack, a pressure plate (42) secured adjacent the current collector (40), and a backbone (60) secured within a backbone-support plane (44) defined within the plate (42). Tie rod ends (62, 64, 66, 68) of the backbone (60) extend over a gap (84) defined between the backbone-support plane (44) and a deflection plane (50) defined within the pressure plate (42) so that the tie rod ends deflect within the gap (84) upon tightening of tie rods (78, 80). Deflection of the backbone enables the backbone (60) to permit limited expansion of the fuel cell stack (30) during operation, and the backbone (60) has adequate flexural strength to prohibit expansion of the stack (30) beyond operating dynamic limits of the stack (30).
    Type: Application
    Filed: December 21, 2006
    Publication date: July 1, 2010
    Inventors: Jeffrey G. Lake, Leonard A. Bach, Pedro Inigo, Evan C. Rege, Chris Vargas, Stephen P. Victor
  • Patent number: 7713648
    Abstract: A pair of reactant cover plates, e.g., fluid manifolds or protective covers (11, 12), on opposite sides of a fuel cell stack (7) are drawn to the fuel cells (14) and pressure plates (8) by tensioning lines, e.g., cables (23) or straps (23a), which may extend around structures, e.g., pins or extensions (11a, 12a; 11e, 12e) extending outwardly from the ends of the cover plates or guides (22a) on the stack, e.g., on the pressure plates in a closed loop, and are tensioned by a tensioning device, such as a turnbuckle (24).
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: May 11, 2010
    Assignee: UTC Power Corporation
    Inventors: Dale W. Petty, Cynthia M. Phillips, Jeffrey G. Lake
  • Publication number: 20090029232
    Abstract: A pair of reactant cover plates, e.g., fluid manifolds or protective covers (11, 12), on opposite sides of a fuel cell stack (7) are drawn to the fuel cells (14) and pressure plates (8) by tensioning lines, e.g., cables (23) or straps (23a), which may extend around structures, e.g., pins or extensions (11a, 12a; 11e, 12e) extending outwardly from the ends of the cover plates or guides (22a) on the stack, e.g., on the pressure plates in a closed loop, and are tensioned by a tensioning device, such as a turnbuckle (24).
    Type: Application
    Filed: July 23, 2007
    Publication date: January 29, 2009
    Inventors: Dale W. Petty, Cynthia M. Phillips, Jeffrey G. Lake
  • Patent number: 7135247
    Abstract: A plurality of cooler plates (9) are disposed between fuel cells (8) in a stack (7) and have protrusions (12, 13) which include coolant inlet and outlet channels (15). The protrusions are surrounded by an elastomeric sealant material (35, 36) which forms a seal with the manifold structures (27, 28) to form coolant inlet and outlet manifolds (17, 20). The sealant material prevents coolant from entering fuel cells along the edges thereof, thereby preventing the fuel cells from being poisoned by the coolant. The coolant inlet and outlet manifold structures (27, 28) also define reactant gas manifolds (18, 21).
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: November 14, 2006
    Assignee: UTC Fuel Cells, LLC
    Inventors: Jeremy P. Meyers, Nileshkumar T. Dave, Jeffrey G. Lake, Mark W. Layaw
  • Patent number: 6495280
    Abstract: A reactant gas manifold (6), to be used with a fuel cell stack (17) having a flat seal surface (16), is provided with a convex seal surface (13) so that when the manifold (6) is distorted by being bolted (20) to the fuel cell stack, the distortion will provide substantially uniform seal pressure along the length of the seal between the surfaces (13, 16).
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: December 17, 2002
    Assignee: UTC Fuel Cells, LLC
    Inventors: Aaron W. Morrow, Joseph M. Sipitkowski, Jeffrey G. Lake
  • Publication number: 20020155337
    Abstract: A reactant gas manifold (6), to be used with a fuel cell stack (17) having a flat seal surface (16), is provided with a convex seal surface (13) so that when the manifold (6) is distorted by being bolted (20) to the fuel cell stack, the distortion will provide substantially uniform seal pressure along the length of the seal between the surfaces (13, 16).
    Type: Application
    Filed: April 20, 2001
    Publication date: October 24, 2002
    Inventors: Aaron W. Morrow, Joseph M. Sipitkowski, Jeffrey G. Lake