Patents by Inventor Jeffrey G. Mandell

Jeffrey G. Mandell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11970734
    Abstract: A composition includes a nanopore including first and second sides and an aperture, nucleotides each including an elongated tag, and a first polynucleotide that is complementary to a second polynucleotide. A polymerase can be disposed adjacent to the first side of the nanopore and configured to add nucleotides to the first polynucleotide based on a sequence of the second polynucleotide. A permanent tether can include a head region anchored to the polymerase, a tail region, and an elongated body disposed therebetween that occurs in the aperture of the nanopore. A first moiety can be disposed on the elongated body that binds to the elongated tag of a first nucleotide upon which the polymerase is acting. A reporter region can be disposed on the elongated body that indicates when the first nucleotide is complementary or is not complementary to a next nucleotide in the sequence of the second polynucleotide.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: April 30, 2024
    Assignee: Illumina, Inc.
    Inventors: Kevin L Gunderson, Jeffrey G. Mandell
  • Patent number: 11898983
    Abstract: Devices and methods of using the devices are disclosed which can provide scalability, improved sensitivity and reduced noise for sequencing polynucleotide. Examples of the devices include a biological or solid-state nanopore, a field effect transistor (FET) sensor with improved gate controllability over the channel, and a porous structure.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: February 13, 2024
    Assignee: Illumina, Inc.
    Inventors: Boyan Boyanov, Rico Otto, Jeffrey G. Mandell
  • Patent number: 11879155
    Abstract: Methods and compositions for characterizing a target polynucleotide, including, characterizing the sequence of the target polynucleotide, using the fractional translocation steps of the target polynucleotide's translocation through a pore.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: January 23, 2024
    Assignee: Illumina, Inc.
    Inventors: Eric Stava, Jens H. Gundlach, Jeffrey G. Mandell, Kevin L. Gunderson, Ian M. Derrington, Hosein Mohimani
  • Publication number: 20240011089
    Abstract: The disclosure provides detection apparatus having one or more nanopores, methods for making apparatus having one or more nanopore and methods for using apparatus having one or more nanopores. Uses include, but are not limited to detection and sequencing of nucleic acids.
    Type: Application
    Filed: June 29, 2023
    Publication date: January 11, 2024
    Inventors: BOYAN BOYANOV, JEFFREY G MANDELL, KEVIN L GUNDERSON, JINGWEI BAI, LIANGLIANG QIANG, BRADLEY BAAS
  • Publication number: 20240003896
    Abstract: The current document discusses a detection system comprising a mechanical-change sensor that exhibits one or more mechanical changes when specifically interacting with entities within a target, each entity having a type, a mechanical-change-to-signal transducer that transduces the one or more mechanical changes into a signal, and an analysis subsystem that determines the types of entities within the target using the signal.
    Type: Application
    Filed: September 14, 2018
    Publication date: January 4, 2024
    Applicant: lllumina, Inc.
    Inventors: Jeffrey G. Mandell, Kevin L. Gunderson, Michael Gregory Keehan, Erin Christine Garcia, Jens H. Gundlach
  • Publication number: 20230357307
    Abstract: In one aspect, the disclosed technology relates to nanopore sequencing with a polynucleotide comprising a plurality of nucleotides, wherein each nucleotide comprises a linker construct between two positions of the nucleotide, wherein the linker construct optionally comprises a reporter moiety corresponding to the identity of the nucleotide, and wherein the linker construct is a part of the cleavable cyclic loop nucleotide comprising a cleavable site. In some embodiments, the nucleotides further comprise arresting constructs for slowing or halting the polynucleotide translocation through a nanopore.
    Type: Application
    Filed: May 3, 2023
    Publication date: November 9, 2023
    Inventors: Abdul Sadeer Abd Salam, Xiangyuan Yang, Hassan Zakiruddin Bohra, Yin Nah Teo, Min Yen Lee, Ramesh Neelakandan, Jeffrey G. Mandell, Erin Garcia, Sharyuen Soh, Daniel Hartoyo Lukamto
  • Patent number: 11782006
    Abstract: A sensing system includes a charge sensor including two electrodes and an electrically conductive channel connecting the two electrodes. The sensing system also includes a charged molecule attached to the electrically conductive channel. The charged molecule includes a recognition site to reversibly bind a label of a labeled nucleotide; has an unbound favored conformation associated with an unbound charge configuration; and has a favored conformation associated with a charge configuration when the recognition site is bound to the label. The charge configuration is different from the unbound charge configuration. The sensing system further includes a polymerase attached to the electrically conductive channel or to the charged molecule.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: October 10, 2023
    Assignee: Illumina, Inc.
    Inventors: Boyan Boyanov, Sergio Peisajovich, Jeffrey G. Mandell
  • Publication number: 20230295701
    Abstract: A method for enriching or amplifying a target nucleic acid including providing a system having a guide nucleic acid, and a Cas or Argonaute protein or a variant thereof. The guide nucleic acid contains a target-specific nucleotide region substantially complementary to a region of the target nucleic acid, and contacting the target nucleic acid with the system to form a complex.
    Type: Application
    Filed: December 9, 2022
    Publication date: September 21, 2023
    Inventors: Jeffrey G. Mandell, Molly He
  • Patent number: 11732301
    Abstract: The disclosure provides detection apparatus having one or more nanopores, methods for making apparatus having one or more nanopore and methods for using apparatus having one or more nanopores. Uses include, but are not limited to detection and sequencing of nucleic acids.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: August 22, 2023
    Assignee: Illumina, Inc.
    Inventors: Boyan Boyanov, Jeffrey G Mandell, Kevin L Gunderson, Jingwei Bai, Liangliang Qiang, Bradley Baas
  • Publication number: 20230184711
    Abstract: Devices and methods of using the devices are disclosed which can provide scalability, improved sensitivity and reduced noise for sequencing polynucleotide. Examples of the devices include a biological or solid-state nanopore, a field effect transistor (FET) sensor with improved gate controllability over the channel, and a porous structure.
    Type: Application
    Filed: June 18, 2021
    Publication date: June 15, 2023
    Inventors: Boyan Boyanov, Rico Otto, Jeffrey G. Mandell
  • Publication number: 20230082589
    Abstract: Some examples herein provide methods for determining a sequence of a nucleic acid template hybridized to a complementary strand. A polymerase coupled to a magnetically-responsive sensor may capture the nucleic acid template hybridized to the complementary strand. The polymerase and the captured nucleic acid template hybridized to the complementary strand may be contacted with a first fluid comprising a nucleotide. The polymerase may incorporate the nucleotide into the complementary strand based on the sequence of the nucleic acid template. The polymerase and the captured nucleic acid template hybridized to the complementary strand, including the incorporated nucleotide, may be contacted with a second fluid comprising a magnetic particle. The incorporated nucleotide may capture the magnetic particle from the second fluid. The captured magnetic particle may cause a change in electrical resistance at the magnetically-responsive sensor.
    Type: Application
    Filed: November 3, 2022
    Publication date: March 16, 2023
    Applicant: Illumina, Inc.
    Inventors: Jeffrey G. Mandell, Lisa Kwok
  • Patent number: 11567060
    Abstract: Example nanopore sequencers include a cis well, a trans well, and a nanopore fluidically connecting the cis and trans wells. In one example sequencer, a modified electrolyte (including an electrolyte and a cation complexing agent) is present in the cis well, or the trans well, or in the cis and the trans wells. In another example sequencer, a gel state polyelectrolyte is present in the cis well, or the trans well, or in the cis and the trans wells.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: January 31, 2023
    Assignee: Illumina, Inc.
    Inventors: Boyan Boyanov, Rohan N. Akolkar, Jeffrey S. Fisher, Jeffrey G. Mandell, Liangliang Qiang, Steven M. Barnard
  • Patent number: 11542544
    Abstract: A method for enriching or amplifying a target nucleic acid including providing a system having a guide nucleic acid, and a Cas or Argonaute protein or a variant thereof. The guide nucleic acid contains a target-specific nucleotide region substantially complementary to a region of the target nucleic acid, and contacting the target nucleic acid with the system to form a complex.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: January 3, 2023
    Assignee: Illumina, Inc.
    Inventors: Jeffrey G. Mandell, Molly He
  • Patent number: 11512348
    Abstract: Sequencing-by-synthesis (SBS) method is provided that includes providing a detection apparatus that includes an array of magnetically-responsive sensors. Each of the magnetically-responsive sensors is located proximate to a respective designated space to detect a magnetic property therefrom. The detection apparatus also includes a plurality of nucleic acid template strands located within corresponding designated spaces. The method also includes conducting a plurality of SBS events to grow a complementary strand by incorporating nucleotides along each template strand. At least some of the nucleotides are attached to corresponding magnetic particles having respective magnetic properties. Each of the plurality of SBS events includes detecting changes in electrical resistance at the magnetically-responsive sensors caused by the respective magnetic properties of the magnetic particles.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: November 29, 2022
    Assignee: Illumina, Inc.
    Inventors: Jeffrey G. Mandell, Lisa Kwok
  • Publication number: 20220251641
    Abstract: Compositions, systems, and methods for detecting events are provided. A composition can include a nanopore including a first side, a second side, and an aperture extending through the first and second sides; and a permanent tether including head and tail regions and an elongated body disposed there between. The head region can be anchored to or adjacent to the first or second side of the nanopore. The elongated body including a reporter region can be movable within the aperture responsive to a first event occurring adjacent to the first side of the nanopore. For example, the reporter region is translationally movable toward the first side responsive to the first event, then toward the second side, then toward the first side responsive to a second event. The first event can include adding a first nucleotide to a polynucleotide. The second event can include adding a second nucleotide to the polynucleotide.
    Type: Application
    Filed: February 18, 2022
    Publication date: August 11, 2022
    Inventors: Jeffrey G. Mandell, Kevin L. Gunderson, Jens H. Gundlach
  • Patent number: 11254981
    Abstract: Compositions, systems, and methods for detecting events are provided. A composition can include a nanopore including a first side, a second side, and an aperture extending through the first and second sides; and a permanent tether including head and tail regions and an elongated body disposed there between. The head region can be anchored to or adjacent to the first or second side of the nanopore. The elongated body including a reporter region can be movable within the aperture responsive to a first event occurring adjacent to the first side of the nanopore. For example, the reporter region is translationally movable toward the first side responsive to the first event, then toward the second side, then toward the first side responsive to a second event. The first event can include adding a first nucleotide to a polynucleotide. The second event can include adding a second nucleotide to the polynucleotide.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: February 22, 2022
    Assignee: Illumina, Inc.
    Inventors: Jeffrey G. Mandell, Kevin L. Gunderson, Jens H. Gundlach
  • Publication number: 20210355534
    Abstract: Methods and compositions for characterizing a target polynucleotide, including, characterizing the sequence of the target polynucleotide, using the fractional translocation steps of the target polynucleotide's translocation through a pore.
    Type: Application
    Filed: May 25, 2021
    Publication date: November 18, 2021
    Inventors: Eric Stava, Jens H. Gundlach, Jeffrey G. Mandell, Kevin L. Gunderson, Ian M. Derrington, Hosein Mohimani
  • Publication number: 20210310985
    Abstract: In an example, a sensing system includes a pH sensor. The pH sensor includes two electrodes and a conductive channel operatively connected to the two electrodes. A complex is attached to the conductive channel of the pH sensor. The complex includes a polymerase linked to at least one pH altering moiety that is to participate in generating a pH change within proximity of the conductive channel from consumption of a secondary substrate in a fluid that is exposed to the pH sensor. The at least one pH altering moiety is selected from the group consisting of an enzyme, a metal coordination complex, a co-factor, and an activator.
    Type: Application
    Filed: January 24, 2020
    Publication date: October 7, 2021
    Inventors: Jeffrey S. Fisher, Brian D. Mather, Kaitlin M. Pugliese, Jeffrey G. Mandell, Maria Candelaria Rogert Bacigalupo, Boyan Boyanov
  • Publication number: 20210269877
    Abstract: The disclosure provides detection apparatus having one or more nanopores, methods for making apparatus having one or more nanopore and methods for using apparatus having one or more nanopores. Uses include, but are not limited to detection and sequencing of nucleic acids.
    Type: Application
    Filed: March 1, 2021
    Publication date: September 2, 2021
    Inventors: BOYAN BOYANOV, JEFFREY G MANDELL, KEVIN L GUNDERSON, JINGWEI BAI, LIANGLIANG QIANG, BRADLEY BAAS
  • Patent number: 11041196
    Abstract: Methods and compositions for characterizing a target polynucleotide, including, characterizing the sequence of the target polynucleotide, using the fractional translocation steps of the target polynucleotide's translocation through a pore.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: June 22, 2021
    Assignee: Illumina, Inc.
    Inventors: Eric Stava, Jens H. Gundlach, Jeffrey G. Mandell, Kevin L. Gunderson, Ian M. Derrington, Hosein Mohimani