Patents by Inventor Jeffrey G. Wiedemeier

Jeffrey G. Wiedemeier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240069913
    Abstract: Systems, methods, and devices are provided for identification of model-specific behavior relating to microcode update capabilities of a processor to enable efficient microcode updates across a range of different machines. A system may include a first processor core and a second processor core. A register of the system may indicate a hardware capability of the system to perform a uniform microcode update by propagating a microcode update from the first processor core to a second processor core.
    Type: Application
    Filed: August 29, 2022
    Publication date: February 29, 2024
    Inventors: Avinash Chandrasekaran, Hisham Shafi, Jeffrey G. Wiedemeier
  • Publication number: 20240061683
    Abstract: A vector friendly instruction format and execution thereof. According to one embodiment of the invention, a processor is configured to execute an instruction set. The instruction set includes a vector friendly instruction format. The vector friendly instruction format has a plurality of fields including a base operation field, a modifier field, an augmentation operation field, and a data element width field, wherein the first instruction format supports different versions of base operations and different augmentation operations through placement of different values in the base operation field, the modifier field, the alpha field, the beta field, and the data element width field, and wherein only one of the different values may be placed in each of the base operation field, the modifier field, the alpha field, the beta field, and the data element width field on each occurrence of an instruction in the first instruction format in instruction streams.
    Type: Application
    Filed: August 28, 2023
    Publication date: February 22, 2024
    Inventors: Robert C. VALENTINE, Jesus Corbal SAN ADRIAN, Roger Espasa SANS, Robert D. CAVIN, Bret L. TOLL, Santiago Galan DURAN, Jeffrey G. WIEDEMEIER, Sridhar SAMUDRALA, Milind Baburao GIRKAR, Edward Thomas GROCHOWSKI, Jonathan Cannon HALL, Dennis R. BRADFORD, Elmoustapha OULD-AHMED-VALL, James C ABEL, Mark CHARNEY, Seth ABRAHAM, Suleyman SAIR, Andrew Thomas FORSYTH, Lisa WU, Charles YOUNT
  • Patent number: 11740904
    Abstract: A vector friendly instruction format and execution thereof. According to one embodiment of the invention, a processor is configured to execute an instruction set. The instruction set includes a vector friendly instruction format. The vector friendly instruction format has a plurality of fields including a base operation field, a modifier field, an augmentation operation field, and a data element width field, wherein the first instruction format supports different versions of base operations and different augmentation operations through placement of different values in the base operation field, the modifier field, the alpha field, the beta field, and the data element width field, and wherein only one of the different values may be placed in each of the base operation field, the modifier field, the alpha field, the beta field, and the data element width field on each occurrence of an instruction in the first instruction format in instruction streams.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: August 29, 2023
    Assignee: Intel Corporation
    Inventors: Robert C. Valentine, Jesus Corbal San Adrian, Roger Espasa Sans, Robert D. Cavin, Bret L. Toll, Santiago Galan Duran, Jeffrey G. Wiedemeier, Sridhar Samudrala, Milind Baburao Girkar, Edward Thomas Grochowski, Jonathan Cannon Hall, Dennis R. Bradford, Elmoustapha Ould-Ahmed-Vall, James C Abel, Mark Charney, Seth Abraham, Suleyman Sair, Andrew Thomas Forsyth, Lisa Wu, Charles Yount
  • Publication number: 20220206875
    Abstract: A processor is described. The processor includes model specific register space that is visible to software above a BIOS level. The model specific register space is to specify a granularity of a processing entity of a lock-step group. The processor also includes logic circuitry to support dynamic entry/exit of the lock-step group's processing entities to/from lock-step mode including: i) termination of lock-step execution by the processing entities before the program code to be executed in lock-step is fully executed; and, ii) as part of the exit from the lock-step mode, restoration of a state of a shadow processing entity of the processing entities as the state existed before the shadow processing entity entered the lock-step mode and began lock-step execution of the program code.
    Type: Application
    Filed: December 24, 2020
    Publication date: June 30, 2022
    Inventors: Vedvyas SHANBHOGUE, Jeff A. HUXEL, Jeffrey G. WIEDEMEIER, James D. ALLEN, Arvind RAMAN, Krishnakumar GANAPATHY
  • Publication number: 20220129274
    Abstract: A vector friendly instruction format and execution thereof. According to one embodiment of the invention, a processor is configured to execute an instruction set. The instruction set includes a vector friendly instruction format. The vector friendly instruction format has a plurality of fields including a base operation field, a modifier field, an augmentation operation field, and a data element width field, wherein the first instruction format supports different versions of base operations and different augmentation operations through placement of different values in the base operation field, the modifier field, the alpha field, the beta field, and the data element width field, and wherein only one of the different values may be placed in each of the base operation field, the modifier field, the alpha field, the beta field, and the data element width field on each occurrence of an instruction in the first instruction format in instruction streams.
    Type: Application
    Filed: November 11, 2021
    Publication date: April 28, 2022
    Applicant: Intel Corporation
    Inventors: Robert C. VALENTINE, Jesus Corbal SAN ADRIAN, Roger Espasa SANS, Robert D. CAVIN, Bret L. TOLL, Santiago Galan DURAN, Jeffrey G. WIEDEMEIER, Sridhar SAMUDRALA, Milind Baburao GIRKAR, Edward Thomas GROCHOWSKI, Jonathan Cannon HALL, Dennis R. BRADFORD, Elmoustapha OULD-AHMED-VALL, James C ABEL, Mark CHARNEY, Seth ABRAHAM, Suleyman SAIR, Andrew Thomas FORSYTH, Lisa WU, Charles YOUNT
  • Patent number: 11210096
    Abstract: A vector friendly instruction format and execution thereof. According to one embodiment of the invention, a processor is configured to execute an instruction set. The instruction set includes a vector friendly instruction format. The vector friendly instruction format has a plurality of fields including a base operation field, a modifier field, an augmentation operation field, and a data element width field, wherein the first instruction format supports different versions of base operations and different augmentation operations through placement of different values in the base operation field, the modifier field, the alpha field, the beta field, and the data element width field, and wherein only one of the different values may be placed in each of the base operation field, the modifier field, the alpha field, the beta field, and the data element width field on each occurrence of an instruction in the first instruction format in instruction streams.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: December 28, 2021
    Assignee: INTEL CORPORATION
    Inventors: Robert C. Valentine, Jesus Corbal San Adrian, Roger Espasa Sans, Robert D. Cavin, Bret L. Toll, Santiago Galan Duran, Jeffrey G. Wiedemeier, Sridhar Samudrala, Milind Baburao Girkar, Edward Thomas Grochowski, Jonathan Cannon Hall, Dennis R. Bradford, Elmoustapha Ould-Ahmed-Vall, James C Abel, Mark Charney, Seth Abraham, Suleyman Sair, Andrew Thomas Forsyth, Lisa Wu, Charles Yount
  • Publication number: 20200394042
    Abstract: A vector friendly instruction format and execution thereof. According to one embodiment of the invention, a processor is configured to execute an instruction set. The instruction set includes a vector friendly instruction format. The vector friendly instruction format has a plurality of fields including a base operation field, a modifier field, an augmentation operation field, and a data element width field, wherein the first instruction format supports different versions of base operations and different augmentation operations through placement of different values in the base operation field, the modifier field, the alpha field, the beta field, and the data element width field, and wherein only one of the different values may be placed in each of the base operation field, the modifier field, the alpha field, the beta field, and the data element width field on each occurrence of an instruction in the first instruction format in instruction streams.
    Type: Application
    Filed: August 27, 2020
    Publication date: December 17, 2020
    Applicant: Intel Corporation
    Inventors: Robert C. VALENTINE, Jesus Corbal SAN ADRIAN, Roger Espasa SANS, Robert D. CAVIN, Bret L. TOLL, Santiago Galan DURAN, Jeffrey G. WIEDEMEIER, Sridhar SAMUDRALA, Milind Baburao GIRKAR, Edward Thomas GROCHOWSKI, Jonathan Cannon HALL, Dennis R. BRADFORD, Elmoustapha OULD-AHMED-VALL, James C. ABEL, Mark CHARNEY, Seth ABRAHAM, Suleyman SAIR, Andrew Thomas FORSYTH, Lisa WU, Charles YOUNT
  • Patent number: 10795680
    Abstract: A vector friendly instruction format and execution thereof. According to one embodiment of the invention, a processor is configured to execute an instruction set. The instruction set includes a vector friendly instruction format. The vector friendly instruction format has a plurality of fields including a base operation field, a modifier field, an augmentation operation field, and a data element width field, wherein the first instruction format supports different versions of base operations and different augmentation operations through placement of different values in the base operation field, the modifier field, the alpha field, the beta field, and the data element width field, and wherein only one of the different values may be placed in each of the base operation field, the modifier field, the alpha field, the beta field, and the data element width field on each occurrence of an instruction in the first instruction format in instruction streams.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: October 6, 2020
    Assignee: Intel Corporation
    Inventors: Robert C. Valentine, Jesus Corbal San Adrian, Roger Espasa Sans, Robert D. Cavin, Bret L. Toll, Santiago Galan Duran, Jeffrey G. Wiedemeier, Sridhar Samudrala, Milind Baburao Girkar, Edward Thomas Grochowski, Jonathan Cannon Hall, Dennis R. Bradford, Elmoustapha Ould-Ahmed-Vall, James C. Abel, Mark Charney, Seth Abraham, Suleyman Sair, Andrew Thomas Forsyth, Lisa Wu, Charles Yount
  • Publication number: 20190227800
    Abstract: A vector friendly instruction format and execution thereof. According to one embodiment of the invention, a processor is configured to execute an instruction set. The instruction set includes a vector friendly instruction format. The vector friendly instruction format has a plurality of fields including a base operation field, a modifier field, an augmentation operation field, and a data element width field, wherein the first instruction format supports different versions of base operations and different augmentation operations through placement of different values in the base operation field, the modifier field, the alpha field, the beta field, and the data element width field, and wherein only one of the different values may be placed in each of the base operation field, the modifier field, the alpha field, the beta field, and the data element width field on each occurrence of an instruction in the first instruction format in instruction streams.
    Type: Application
    Filed: February 28, 2019
    Publication date: July 25, 2019
    Inventors: Robert C. VALENTINE, Jesus Corbal SAN ADRIAN, Roger Espasa SANS, Robert D. CAVIN, Bret L. TOLL, Santiago Galan DURAN, Jeffrey G. WIEDEMEIER, Sridhar SAMUDRALA, Milind Baburao GIRKAR, Edward Thomas GROCHOWSKI, Jonathan Cannon HALL, Dennis R. BRADFORD, Elmoustapha OULD-AHMED-VALL, James C. ABEL, Mark CHARNEY, Seth ABRAHAM, Suleyman SAIR, Andrew Thomas FORSYTH, Lisa WU, Charles YOUNT
  • Publication number: 20190108030
    Abstract: Embodiments of systems, apparatuses, and methods for performing a blend instruction in a computer processor are described. In some embodiments, the execution of a blend instruction causes a data element-by-element selection of data elements of first and second source operands using the corresponding bit positions of a writemask as a selector between the first and second operands and storage of the selected data elements into the destination at the corresponding position in the destination.
    Type: Application
    Filed: September 27, 2018
    Publication date: April 11, 2019
    Inventors: Jesus CORBAL SAN ADRIAN, Bret L. TOLL, Robert C. VALENTINE, Jeffrey G. WIEDEMEIER, Sridhar SAMUDRALA, Milind Baburao GIRKAR, Andrew Thomas FORSYTH, Elmoustapha OULD-AHMED-VALL, Dennis R. BRADFORD, Lisa K. WU
  • Publication number: 20190108029
    Abstract: Embodiments of systems, apparatuses, and methods for performing a blend instruction in a computer processor are described. In some embodiments, the execution of a blend instruction causes a data element-by-element selection of data elements of first and second source operands using the corresponding bit positions of a writemask as a selector between the first and second operands and storage of the selected data elements into the destination at the corresponding position in the destination.
    Type: Application
    Filed: September 27, 2018
    Publication date: April 11, 2019
    Inventors: Jesus CORBAL SAN ADRIAN, Bret L. TOLL, Robert C. VALENTINE, Jeffrey G. WIEDEMEIER, Sridhar SAMUDRALA, Milind Baburao GIRKAR, Andrew Thomas FORSYTH, Elmoustapha OULD-AHMED-VALL, Dennis R. BRADFORD, Lisa K. WU
  • Patent number: 10175990
    Abstract: According to a first aspect, efficient data transfer operations can be achieved by: decoding by a processor device, a single instruction specifying a transfer operation for a plurality of data elements between a first storage location and a second storage location; issuing the single instruction for execution by an execution unit in the processor; detecting an occurrence of an exception during execution of the single instruction; and in response to the exception, delivering pending traps or interrupts to an exception handler prior to delivering the exception.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: January 8, 2019
    Assignee: Intel Corporation
    Inventors: Christopher J. Hughes, Yen-Kuang (Y. K.) Chen, Mayank Bomb, Jason W. Brandt, Mark J. Buxton, Mark J. Charney, Srinivas Chennupaty, Jesus Corbal, Martin G. Dixon, Milind B. Girkar, Jonathan C. Hall, Hideki (Saito) Ido, Peter Lachner, Gilbert Neiger, Chris J. Newburn, Rajesh S. Parthasarathy, Bret L. Toll, Robert Valentine, Jeffrey G. Wiedemeier
  • Patent number: 10114651
    Abstract: According to a first aspect, efficient data transfer operations can be achieved by: decoding by a processor device, a single instruction specifying a transfer operation for a plurality of data elements between a first storage location and a second storage location; issuing the single instruction for execution by an execution unit in the processor; detecting an occurrence of an exception during execution of the single instruction; and in response to the exception, delivering pending traps or interrupts to an exception handler prior to delivering the exception.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: October 30, 2018
    Assignee: Intel Corporation
    Inventors: Christopher J. Hughes, Yen-Kuang (Y. K.) Chen, Mayank Bomb, Jason W. Brandt, Mark J. Buxton, Mark J. Charney, Srinivas Chennupaty, Jesus Corbal, Martin G. Dixon, Milind B. Girkar, Jonathan C. Hall, Hideki (Saito) Ido, Peter Lachner, Gilbert Neiger, Chris J. Newburn, Rajesh S. Parthasarathy, Bret L. Toll, Robert Valentine, Jeffrey G. Wiedemeier
  • Patent number: 10037205
    Abstract: Vector blend and permute functionality are provided, responsive to instructions specifying: a destination vector register comprising fields to store vector elements, a first vector register, a vector element size, a second vector register, and a third operand. Indices are read from fields in the second register. Each index has a first selector portion and a second selector portion. Corresponding unmasked vector elements are stored to fields of the destination register, wherein each vector element, responsive to the respective first selector portion having a first value, is copied to an intermediate vector from a corresponding data field of the first register, and responsive to the respective first selector portion having a second value, is copied to the intermediate vector from a corresponding data field of the third operand. Then unmasked data fields of the destination are replaced by data fields in the intermediate vector indexed by the corresponding second selector portions.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: July 31, 2018
    Assignee: Intel Corporation
    Inventors: Robert Valentine, Bret L. Toll, Jesus Corbal, Jeffrey G. Wiedemeier, Sridhar Samudrala
  • Publication number: 20180150301
    Abstract: According to a first aspect, efficient data transfer operations can be achieved by: decoding by a processor device, a single instruction specifying a transfer operation for a plurality of data elements between a first storage location and a second storage location; issuing the single instruction for execution by an execution unit in the processor; detecting an occurrence of an exception during execution of the single instruction; and in response to the exception, delivering pending traps or interrupts to an exception handler prior to delivering the exception.
    Type: Application
    Filed: May 20, 2013
    Publication date: May 31, 2018
    Inventors: Christopher J. Hughes, Yen-Kuang (Y.K.) Chen, Mayank Bomb, Jason W. Brandt, Mark J. Buxton, Mark J. Charney, Srinivas Chennupaty, Jesus Corbal, Martin G. Dixon, Milind B. Girkar, Jonathan C. Hall, Hideki (Saito) Ido, Peter Lachner, Gilbert Neiger, Chris J. Newburn, Rajesh S. Parthasarathy, Bret L. Toll, Robert Valentine, Jeffrey G. Wiedemeier
  • Publication number: 20180129506
    Abstract: According to a first aspect, efficient data transfer operations can be achieved by: decoding by a processor device, a single instruction specifying a transfer operation for a plurality of data elements between a first storage location and a second storage location; issuing the single instruction for execution by an execution unit in the processor; detecting an occurrence of an exception during execution of the single instruction; and in response to the exception, delivering pending traps or interrupts to an exception handler prior to delivering the exception.
    Type: Application
    Filed: January 4, 2018
    Publication date: May 10, 2018
    Inventors: Christopher J. Hughes, Yen-Kuang (Y.K.) Chen, Mayank Bomb, Jason W. Brandt, Mark J. Buxton, Mark J. Charney, Srinivas Chennupaty, Jesus Corbal, Martin G. Dixon, Milind B. Girkar, Jonathan C. Hall, Hideki (Saito) Ido, Peter Lachner, Gilbert Neiger, Chris J. Newburn, Rajesh S. Parthasarathy, Bret L. Toll, Robert Valentine, Jeffrey G. Wiedemeier
  • Patent number: 9513917
    Abstract: A vector friendly instruction format and execution thereof. According to one embodiment of the invention, a processor is configured to execute an instruction set. The instruction set includes a vector friendly instruction format. The vector friendly instruction format has a plurality of fields including a base operation field, a modifier field, an augmentation operation field, and a data element width field, wherein the first instruction format supports different versions of base operations and different augmentation operations through placement of different values in the base operation field, the modifier field, the alpha field, the beta field, and the data element width field, and wherein only one of the different values may be placed in each of the base operation field, the modifier field, the alpha field, the beta field, and the data element width field on each occurrence of an instruction in the first instruction format in instruction streams.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: December 6, 2016
    Assignee: Intel Corporation
    Inventors: Robert C. Valentine, Jesus Corbal San Adrian, Roger Espasa Sans, Robert D. Cavin, Bret L. Toll, Santiago Galan Duran, Jeffrey G. Wiedemeier, Sridhar Samudrala, Milind Baburao Girkar, Edward Thomas Grochowski, Jonathan Cannon Hall, Dennis R. Bradford, Elmoustapha Ould-Ahmed-Vall, James C. Abel, Mark Charney, Seth Abraham, Suleyman Sair, Andrew Thomas Forsyth, Lisa Wu, Charles Yount
  • Patent number: 9329865
    Abstract: A processor includes a microcode storage to store a first microcode subroutine and a microcode caller of the first microcode subroutine. The processor further includes a first microcode alias storage comprising a first plurality of microcode alias locations and a second microcode alias storage comprising a second plurality of microcode alias locations. The processor further includes a first logic, coupled to the first microcode alias storage and to the second microcode alias storage, wherein the first logic is configured to select a first one of a) the first microcode alias storage for storage of a parameter location in one of the first plurality of microcode alias locations or b) the second microcode alias storage for storage of the parameter location in one of the second plurality of microcode alias locations.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: May 3, 2016
    Assignee: Intel Corporation
    Inventors: Jonathan D. Combs, Kameswar Subramaniam, Jeffrey G. Wiedemeier
  • Publication number: 20140365754
    Abstract: A processor includes a microcode storage to store a first microcode subroutine and a microcode caller of the first microcode subroutine. The processor further includes a first microcode alias storage comprising a first plurality of microcode alias locations and a second microcode alias storage comprising a second plurality of microcode alias locations. The processor further includes a first logic, coupled to the first microcode alias storage and to the second microcode alias storage, wherein the first logic is configured to select a first one of a) the first microcode alias storage for storage of a parameter location in one of the first plurality of microcode alias locations or b) the second microcode alias storage for storage of the parameter location in one of the second plurality of microcode alias locations.
    Type: Application
    Filed: June 11, 2013
    Publication date: December 11, 2014
    Inventors: Jonathan D. Combs, Kameswar Subramaniam, Jeffrey G. Wiedemeier
  • Publication number: 20140344553
    Abstract: According to a first aspect, efficient data transfer operations can be achieved by: decoding by a processor device, a single instruction specifying a transfer operation for a plurality of data elements between a first storage location and a second storage location; issuing the single instruction for execution by an execution unit in the processor; detecting an occurrence of an exception during execution of the single instruction; and in response to the exception, delivering pending traps or interrupts to an exception handler prior to delivering the exception.
    Type: Application
    Filed: May 20, 2013
    Publication date: November 20, 2014
    Inventors: Christopher J. Hughes, Yen-Kuang (Y.K.) Chen, Mayank Bomb, Jason W. Brandt, Mark J. Buxton, Mark J. Charney, Srinivas Chennupaty, Jesus Corbal, Martin G. Dixon, Milind B. Girkar, Jonathan C. Hall, Hideki (Saito) Ido, Peter Lachner, Gilbert Neiger, Chris J. Newburn, Rajesh S. Parthasarathy, Bret L. Toll, Robert Valentine, Jeffrey G. Wiedemeier