Patents by Inventor Jeffrey GOLDA

Jeffrey GOLDA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11963909
    Abstract: A method and surgical system including a laser source for generating a pulsed laser beam, an imaging system including a detector, shared optics configured for directing the pulsed laser beam to an object to be sampled and confocally deflecting back-reflected light from the object to the detector, a patient interface, through which the pulsed laser beam is directed, the patient interface having, a cup with a large and small opening, and a notched ring inside the cup; and a controller operatively coupled to the laser source, the imaging system and the shared optics, the controller configured to align the eye for procedure.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: April 23, 2024
    Assignee: AMO Development, LLC
    Inventors: John S. Hart, David A. Dewey, Georg Schuele, Phillip H. Gooding, Christine J. Beltran, Javier G. Gonzalez, Katrina B. Sheehy, Jeffrey A. Golda, Raymond Woo, Madeleine C. O'Meara, Noah Bareket, Thomas Z. Teisseyre, Bruce Woodley
  • Publication number: 20220273493
    Abstract: A method of cataract surgery in an eye of a patient includes identifying a feature selected from the group consisting of an axis, a meridian, and a structure of an eye by corneal topography and forming fiducial mark incisions with a laser beam along the axis, meridian or structure in the cornea outside the optical zone of the eye. A laser cataract surgery system a laser source, a topography measurement system, an integrated optical subsystem, and a processor in operable communication with the laser source, corneal topography subsystem and the integrated optical system. The processor includes a tangible non-volatile computer readable medium comprising instructions to determine one of an axis, meridian and structure of an eye of the patient based on the measurements received from topography measurement system, and direct the treatment beam so as to incise radial fiducial mark incisions.
    Type: Application
    Filed: May 19, 2022
    Publication date: September 1, 2022
    Inventors: Rajeshwari Srinivasan, Jeffrey A. Golda, Javier G. Gonzalez, David D. Scott, David A. Dewey, Noah Bareket, Georg Schuele
  • Patent number: 11337857
    Abstract: A method of cataract surgery in an eye of a patient includes identifying a feature selected from the group consisting of an axis, a meridian, and a structure of an eye by corneal topography and forming fiducial mark incisions with a laser beam along the axis, meridian or structure in the cornea outside the optical zone of the eye. A laser cataract surgery system a laser source, a topography measurement system, an integrated optical subsystem, and a processor in operable communication with the laser source, corneal topography subsystem and the integrated optical system. The processor includes a tangible non-volatile computer readable medium comprising instructions to determine one of an axis, meridian and structure of an eye of the patient based on the measurements received from topography measurement system, and direct the treatment beam so as to incise radial fiducial mark incisions.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: May 24, 2022
    Assignee: AMO Development, LLC
    Inventors: Rajeshwari Srinivasan, Jeffrey A. Golda, Javier G. Gonzalez, David D. Scott, David A. Dewey, Noah Bareket, Georg Schuele
  • Publication number: 20220110520
    Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.
    Type: Application
    Filed: December 23, 2021
    Publication date: April 14, 2022
    Inventors: Georg Schuele, Noah Bareket, David Dewey, John S. Hart, Javier G. Gonzalez, Raymond Woo, Thomas Z. Teisseyre, Jeffrey A. Golda, Katrina B. Sheehy, Madeleine C. O'Meara, Bruce Woodley
  • Patent number: 11229357
    Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: January 25, 2022
    Assignee: AMO Development, LLC
    Inventors: Georg Schuele, Noah Bareket, David Dewey, John S. Hart, Javier G. Gonzalez, Raymond Woo, Thomas Z. Teisseyre, Jeffrey A. Golda, Katrina B. Sheehy, Madeleine C O'Meara, Bruce Woodley
  • Publication number: 20210307606
    Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.
    Type: Application
    Filed: April 21, 2021
    Publication date: October 7, 2021
    Inventors: Georg Schuele, Noah Bareket, David Dewey, John S. Hart, Javier G. Gonzalez, Raymond Woo, Thomas Z. Teisseyre, Jeffrey A. Golda, Katrina B. Sheehy, Madeleine C. O'Meara, Bruce Woodley
  • Publication number: 20210185131
    Abstract: Systems and methods are disclosed for displaying health data during a security timeout. One method includes: displaying an interactive interface; receiving a data type included in the display; detecting a timeout of the interactive interface; hiding or removing the data type from the display in response to the timeout; and initiating an extended timeout including the display with the data type removed.
    Type: Application
    Filed: February 9, 2021
    Publication date: June 17, 2021
    Inventors: Gregory R. HART, Gregory PAIK, Jeffrey GOLDA, Amal KHANDELWAL, Razik YOUSFI
  • Patent number: 10951715
    Abstract: Systems and methods are disclosed for displaying health data during a security timeout. One method includes: displaying an interactive interface; receiving a data type included in the display; detecting a timeout of the interactive interface; hiding or removing the data type from the display in response to the timeout; and initiating an extended timeout including the display with the data type removed.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: March 16, 2021
    Assignee: HeartFlow, Inc.
    Inventors: Gregory R. Hart, Gregory Paik, Jeffrey Golda, Amal Khandelwal, Razik Yousfi
  • Publication number: 20200038245
    Abstract: A method and surgical system including a laser source for generating a pulsed laser beam, an imaging system including a detector, shared optics configured for directing the pulsed laser beam to an object to be sampled and confocally deflecting back-reflected light from the object to the detector, a patient interface, through which the pulsed laser beam is directed, the patient interface having, a cup with a large and small opening, and a notched ring inside the cup; and a controller operatively coupled to the laser source, the imaging system and the shared optics, the controller configured to align the eye for procedure.
    Type: Application
    Filed: October 14, 2019
    Publication date: February 6, 2020
    Inventors: John S. Hart, David A. Dewey, Georg Schuele, Phillip H. Gooding, Christine J. Beltran, Javier G. Gonzalez, Katrina B. Sheehy, Jeffrey A. Golda, Raymond Woo, Madeleine C. O'Meara, Noah Bareket, Thomas Z. Teisseyre, Bruce Woodley
  • Publication number: 20190350760
    Abstract: A method of cataract surgery in an eye of a patient includes identifying a feature selected from the group consisting of an axis, a meridian, and a structure of an eye by corneal topography and forming fiducial mark incisions with a laser beam along the axis, meridian or structure in the cornea outside the optical zone of the eye. A laser cataract surgery system a laser source, a topography measurement system, an integrated optical subsystem, and a processor in operable communication with the laser source, corneal topography subsystem and the integrated optical system. The processor includes a tangible non-volatile computer readable medium comprising instructions to determine one of an axis, meridian and structure of an eye of the patient based on the measurements received from topography measurement system, and direct the treatment beam so as to incise radial fiducial mark incisions.
    Type: Application
    Filed: August 2, 2019
    Publication date: November 21, 2019
    Inventors: Rajeshwari Srinivasan, Jeffrey A. Golda, Javier G. Gonzalez, David D. Scott, David A. Dewey, Noah Bareket, Georg Schuele
  • Patent number: 10441463
    Abstract: A method of reversibly separating an imaging assembly from an optical path in a laser surgical system includes generating an electromagnetic beam, propagating the electromagnetic beam from the beam source to a scanner along an optical path, the optical path comprising a first optical element that attenuates the electromagnetic beam, reversibly inserting a confocal bypass assembly into the optical path, diverting the electromagnetic beam along a diversion optical path around the first optical element, wherein the confocal bypass assembly automatically exits the optical path when a power loss occurs to one or more components of the system.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: October 15, 2019
    Assignee: OPTIMEDICA CORPORATION
    Inventors: David A. Dewey, Georg Schuele, Noah Bareket, John S. Hart, Javier G. Gonzalez, Raymond Woo, Thomas Z. Teisseyre, Jeffrey A. Golda, Katrina B. Sheehy, Madeleine C. O'Meara, Bruce Woodley
  • Patent number: 10441465
    Abstract: A method and surgical system including a laser source for generating a pulsed laser beam, an imaging system including a detector, shared optics configured for directing the pulsed laser beam to an object to be sampled and confocally deflecting back-reflected light from the object to the detector, a patient interface, through which the pulsed laser beam is directed, the patient interface having, a cup with a large and small opening, and a notched ring inside the cup; and a controller operatively coupled to the laser source, the imaging system and the shared optics, the controller configured to align the eye for procedure.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: October 15, 2019
    Assignee: OPTIMEDICA CORPORATION
    Inventors: John S. Hart, David A. Dewey, Georg Schuele, Phillip H. Gooding, Christine J. Beltran, Javier G. Gonzalez, Katrina B. Sheehy, Jeffrey A. Golda, Raymond Woo, Madeleine C. O'Meara, Noah Bareket, Thomas Z. Teisseyre, Bruce Woodley
  • Patent number: 10369053
    Abstract: A method of cataract surgery in an eye of a patient includes identifying a feature selected from the group consisting of an axis, a meridian, and a structure of an eye by corneal topography and forming fiducial mark incisions with a laser beam along the axis, meridian or structure in the cornea outside the optical zone of the eye. A laser cataract surgery system a laser source, a topography measurement system, an integrated optical subsystem, and a processor in operable communication with the laser source, corneal topography subsystem and the integrated optical system. The processor includes a tangible non-volatile computer readable medium comprising instructions to determine one of an axis, meridian and structure of an eye of the patient based on the measurements received from topography measurement system, and direct the treatment beam so as to incise radial fiducial mark incisions.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: August 6, 2019
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Rajeshwari Srinivasan, Jeffrey A. Golda, Javier G. Gonzalez, David D. Scott, David A. Dewey, Noah Bareket, Georg Schuele
  • Publication number: 20190076017
    Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.
    Type: Application
    Filed: November 12, 2018
    Publication date: March 14, 2019
    Inventors: Georg Schuele, Noah Bareket, David Dewey, John S. Hart, Javier G. Gonzalez, Raymond Woo, Thomas Z. Teisseyre, Jeffrey A. Golda, Katrina B. Sheehy, Madeleine C O'Meara, Bruce Woodley
  • Publication number: 20190068722
    Abstract: Systems and methods are disclosed for displaying health data during a security timeout. One method includes: displaying an interactive interface; receiving a data type included in the display; detecting a timeout of the interactive interface; hiding or removing the data type from the display in response to the timeout; and initiating an extended timeout including the display with the data type removed.
    Type: Application
    Filed: August 28, 2018
    Publication date: February 28, 2019
    Applicant: HeartFlow, Inc.
    Inventors: Gregory R. HART, Gregory PAIK, Jeffrey GOLDA, Amal KHANDELWAL, Razik YOUSFI
  • Patent number: 10123696
    Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: November 13, 2018
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Georg Schuele, Noah Bareket, David Dewey, John S. Hart, Javier G Gonzalez, Raymond Woo, Thomas Z Teisseyre, Jeffrey A Golda, Katrina B Sheehy, Madeleine C O'Meara, Bruce Woodley
  • Patent number: D802542
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: November 14, 2017
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Steven S. Christensen, Antonio D. Lucero, Brian Riley, Eric B. Lafay, David D. Scott, Michelle SanPedro, Raymond B. Cota, Qi Wu, Jeffrey A. Golda
  • Patent number: D804038
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: November 28, 2017
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Steven S. Christensen, Antonio D. Lucero, Brian Riley, Eric B. Lafay, David D. Scott, Michelle SanPedro, Raymond B. Cota, Qi Wu, Jeffrey A. Golda
  • Patent number: D826410
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: August 21, 2018
    Assignee: Optimedica Corporation
    Inventors: Steven S. Christensen, Antonio D. Lucero, Brian Riley, Eric B. Lafay, David D. Scott, Michelle SanPedro, Raymond B. Cota, Qi Wu, Adam K. Hoopai, Jeffrey A. Golda
  • Patent number: D857210
    Type: Grant
    Filed: September 5, 2016
    Date of Patent: August 20, 2019
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Steven S. Christensen, Antonio D. Lucero, Brian Riley, Eric B. Lafay, David D. Scott, Michelle SanPedro, Raymond B. Cota, Qi Wu, Jeffrey A. Golda