Patents by Inventor Jeffrey Haggard

Jeffrey Haggard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180298526
    Abstract: A continuous filament spun-laid web includes a plurality of polymer fibers within the web, the web having a first thickness and the web being free of any thermal or mechanical bonding treatment. Activation of the web results in at least one of an increase from the first thickness prior to activation to a second thickness post activation in which the second thickness is at least about two times greater than the first thickness, a decrease in density of the web post activation in relation to a density of the web prior to activation, the web being configured to withstand an elastic elongation from about 10% to about 350% in at least one of a machine direction (MD) of the web and a cross-direction (CD) of the web, and the web having a tensile strength from about 50 gram-force/cm2 to about 5000 gram-force/cm2.
    Type: Application
    Filed: June 26, 2018
    Publication date: October 18, 2018
    Inventors: Arnold Wilkie, James Brang, Jeffrey Haggard, Angel Antonio De La Hoz
  • Patent number: 10030322
    Abstract: A continuous filament spun-laid web includes a plurality of polymer fibers within the web, the web having a first thickness and the web being free of any thermal or mechanical bonding treatment. Activation of the web results in at least one of an increase from the first thickness prior to activation to a second thickness post activation in which the second thickness is at least about two times greater than the first thickness, a decrease in density of the web post activation in relation to a density of the web prior to activation, the web being configured to withstand an elastic elongation from about 10% to about 350% in at least one of a machine direction (MD) of the web and a cross-direction (CD) of the web, and the web having a tensile strength from about 50 gram-force/cm2 to about 5000 gram-force/cm2.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: July 24, 2018
    Assignee: HILLS, INC.
    Inventors: Arnold Wilkie, James Brang, Jeffrey Haggard, Angel Antonio De La Hoz
  • Publication number: 20150017411
    Abstract: A continuous filament spun-laid web includes a plurality of polymer fibers within the web, the web having a first thickness and the web being free of any thermal or mechanical bonding treatment. Activation of the web results in at least one of an increase from the first thickness prior to activation to a second thickness post activation in which the second thickness is at least about two times greater than the first thickness, a decrease in density of the web post activation in relation to a density of the web prior to activation, the web being configured to withstand an elastic elongation from about 10% to about 350% in at least one of a machine direction (MD) of the web and a cross-direction (CD) of the web, and the web having a tensile strength from about 50 gram-force/cm2 to about 5000 gram-force/cm2.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 15, 2015
    Inventors: Arnold Wilkie, James Brang, Jeffrey Haggard, Angel Antonio De La Hoz
  • Publication number: 20070165990
    Abstract: Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof are described. In one embodiment, a multi-component fiber includes a fiber body formed from a set of elongated members, and at least one of the set of elongated members includes a temperature regulating material having a latent heat of at least 40 J/g and a transition temperature in the range of 22° C. to 40° C. The temperature regulating material provides thermal regulation based on at least one of absorption and release of the latent heat at the transition temperature. The multi-component fiber can be formed via a melt spinning process or a solution spinning process and can be used or incorporated in various products where a thermal regulating property is desired. For example, the multi-component fiber can be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.
    Type: Application
    Filed: November 22, 2006
    Publication date: July 19, 2007
    Inventors: Monte Magill, Mark Hartmann, Jeffrey Haggard
  • Publication number: 20070161306
    Abstract: Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof are described. In one embodiment, a multi-component fiber includes a fiber body formed from a set of elongated members, and at least one of the set of elongated members includes a temperature regulating material having a latent heat of at least 40 J/g and a transition temperature in the range of 22° C. to 40° C. The temperature regulating material provides thermal regulation based on at least one of absorption and release of the latent heat at the transition temperature. The multi-component fiber can be formed via a melt spinning process or a solution spinning process and can be used or incorporated in various products where a thermal regulating property is desired. For example, the multi-component fiber can be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.
    Type: Application
    Filed: November 22, 2006
    Publication date: July 12, 2007
    Inventors: Monte Magill, Mark Hartmann, Jeffrey Haggard, James Brang
  • Publication number: 20070160836
    Abstract: Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof are described. In one embodiment, a multi-component fiber includes a fiber body formed from a set of elongated members, and at least one of the set of elongated members includes a temperature regulating material having a latent heat of at least 40 J/g and a transition temperature in the range of 22° C. to 40° C. The temperature regulating material provides thermal regulation based on at least one of absorption and release of the latent heat at the transition temperature. The multi-component fiber can be formed via a melt spinning process or a solution spinning process and can be used or incorporated in various products where a thermal regulating property is desired. For example, the multi-component fiber can be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.
    Type: Application
    Filed: November 22, 2006
    Publication date: July 12, 2007
    Inventors: Monte Magill, Mark Hartmann, Jeffrey Haggard, James Brang
  • Publication number: 20060272806
    Abstract: A packer for downhole use features interacting elements of swelling material. Preferably the elements are in contact for relative movement from an initial diameter for run in. As the elements swell, they move with respect to each other to enlarge the diameter of the assembly so that a sealing contact is made. Each element exerts a residual force on the adjacent element to enhance the seal. Each element is preferably coated with a material that allows well fluids to reach the swelling material and then later to stiffen and become impervious from exposure to such fluids. The assembly can be covered for run in to delay the onset of expansion until the target depth is reached for the packer to be set.
    Type: Application
    Filed: January 5, 2006
    Publication date: December 7, 2006
    Inventors: Arnold Wilkie, Jeffrey Haggard
  • Publication number: 20050208300
    Abstract: Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof are described. In one embodiment, a multi-component fiber includes a fiber body formed from a set of elongated members, and at least one of the set of elongated members includes a temperature regulating material having a latent heat of at least 40 J/g and a transition temperature in the range of 22° C. to 40° C. The temperature regulating material provides thermal regulation based on at least one of absorption and release of the latent heat at the transition temperature. The multi-component fiber can be formed via a melt spinning process or a solution spinning process and can be used or incorporated in various products where a thermal regulating property is desired. For example, the multi-component fiber can be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.
    Type: Application
    Filed: March 11, 2005
    Publication date: September 22, 2005
    Inventors: Monte Magill, Mark Hartmann, Jeffrey Haggard
  • Publication number: 20050191487
    Abstract: Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof are described. In one embodiment, a multi-component fiber includes a fiber body formed from a set of elongated members, and at least one of the set of elongated members includes a temperature regulating material haying a latent heat of at least 40 J/g and a transition temperature in the range of 22° C. to 40° C. The temperature regulating material provides thermal regulation based on at least one of absorption and release of the latent heat at the transition temperature. The multi-component fiber can be formed via a melt spinning process or a solution spinning process and can be used or incorporated in various products where a thermal regulating property is desired. For example, the multi-component fiber can be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.
    Type: Application
    Filed: February 4, 2005
    Publication date: September 1, 2005
    Inventors: Monte Magill, Mark Hartmann, Jeffrey Haggard
  • Publication number: 20050164585
    Abstract: The invention relates to a multi-component fiber having enhanced reversible thermal properties and methods of manufacturing thereof. The multi-component fiber comprises a fiber body formed from a plurality of elongated members, at least one of the elongated members comprising a temperature regulating material dispersed therein. The temperature regulating material comprises a phase change material. The multi-component fiber may be formed via a melt spinning process or a solution spinning process and may be used or incorporated in various products where a thermal regulating property is desired. For example, the multi-component fiber may be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.
    Type: Application
    Filed: December 21, 2004
    Publication date: July 28, 2005
    Inventors: Monte Magill, Mark Hartmann, Jeffrey Haggard