Patents by Inventor Jeffrey Howard

Jeffrey Howard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10635833
    Abstract: A computer system may perform substitutions for fields in a set of records, where performing a given substitution involves replacing a field in the set of records with a replacement field, and the substitutions remove the context information in the set of records while maintaining relevance of the set of records. Then, the computer system may generate an artificial set of records based, at least in part, on the set of records, where a given artificial record includes one or more modified portions of the set of records. Next, the computer system may combine the set of records and the artificial set of records into a second set of records, where at least some phrases or values in the second set of records are uniformly distributed.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: April 28, 2020
    Assignee: Q Bio, Inc.
    Inventors: Jeffrey Howard Kaditz, Andrew Gettings Stevens, David Grijalva
  • Patent number: 10574810
    Abstract: Example embodiments relate to a user equipment that can receive a command to turn on the user equipment. In response to determining that the user equipment has not been initialized, and prior to displaying a graphical user interface listing a Wi-Fi network to which the user equipment can connect, the user equipment presents a graphical user interface that displays an option to activate a cellular service provided by a mobile network operator entity, but does not display an option to activate the cellular service at a subsequent time.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: February 25, 2020
    Assignee: AT&T MOBILITY II LLC
    Inventors: Katie Keser, Tara Colon, Jeffrey Howard
  • Patent number: 10567167
    Abstract: Systems and methods for securing or encrypting data or other information arising from a user's interaction with software and/or hardware, resulting in transformation of original data into ciphertext. Generally, the ciphertext is generated using context-based keys that depend on the environment in which the original data originated and/or was accessed. The ciphertext can be stored in a user's storage device or in an enterprise database (e.g., at-rest encryption) or shared with other users (e.g., cryptographic communication). The system generally allows for secure federation across organizations, including mechanisms to ensure that the system itself and any other actor with pervasive access to the network cannot compromise the confidentially of the protected data.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: February 18, 2020
    Assignee: IONIC SECURITY INC.
    Inventors: Adam Ghetti, Jeffrey Howard, James Jordan, Nicholas Smith, Jeremy Eckman, Ryan Speers, Sohaib Bhatti
  • Patent number: 10473444
    Abstract: A neck sizing die for shoulder breeching ammunition cartridge cases that uses the shoulder to align the case, not the body. Alignment occurs before resizing. Resizing is done in a two-step process: a bushing is used to shrink the neck diameter and then an expansion button is used to increase it. Bushing and button diameters are highly selectable and easily changed. Cone-and-cup interfaces ensure concentricity of the case shoulder to the bushing or button. The unique alignment technique and two-step sizing method produces a case with a neck having an interior diameter of the user's choice with the interior wall of the neck aligned to the shoulder. This results in a case that will more reliably position the bullet concentric with the bore of the barrel than existing tools and methods.
    Type: Grant
    Filed: March 31, 2019
    Date of Patent: November 12, 2019
    Inventor: Jeffrey Howard Gent
  • Patent number: 10473443
    Abstract: A tube with a conical mouth slides over the neck of an ammunition cartridge and is pressed against the shoulder to align the case. A neck reamer translates and rotates within the tube, the tip being inserted into the neck. Both mouth and tip are replaceable, come in different sizes, and come with smooth or abrading surfaces. The tip and the mouth are coaxial. The mouth perfects the shoulder surface and the tip perfects the neck interior. This results in a cartridge case having a neck with an interior wall that is a perfect cylinder that is coaxial with the perfected exterior of the conical shoulder.
    Type: Grant
    Filed: March 31, 2019
    Date of Patent: November 12, 2019
    Inventor: Jeffrey Howard Gent
  • Patent number: 10446917
    Abstract: Deformable magnetic antennas are provided to include a plurality of flexible magnetic antenna layers stacked to form a layered magnetic antenna structure that is bendable. Each flexible magnetic antenna layer includes a magnetic material that confines a magnetic field to concentrate a magnetic flux of the magnetic field inside the magnetic antenna layer. A lubricating material is applied between adjacent flexible magnetic antenna layers to allow adjacent magnetic layers to move relative to one another when the layered magnetic antenna structure is bent so as to reduce a stress in each flexible magnetic antenna layer caused by bending the layered magnetic antenna structure.
    Type: Grant
    Filed: December 3, 2016
    Date of Patent: October 15, 2019
    Assignee: General Atomics
    Inventors: Mark Eugene Bonebright, Mark William Covington, Jeffrey Howard Caton
  • Patent number: 10359486
    Abstract: During operation, a system may apply a polarizing field and an excitation sequence to a sample. Then, the system may measure a signal associated with the sample for a time duration that is less than a magnitude of a relaxation time associated with the sample. Next, the system may calculate the relaxation time based on a difference between the measured signal and a predicted signal of the sample, where the predicted signal is based on a forward model, the polarizing field and the excitation sequence. After modifying at least one of the polarizing field and the excitation sequence, the aforementioned operations may be repeated until a magnitude of the difference is less than a convergence criterion. Note that the calculations may be performed concurrently with the measurements and may not involve performing a Fourier transform on the measured signal.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: July 23, 2019
    Assignee: Q Bio, Inc.
    Inventors: Jeffrey Howard Kaditz, Athanasios Polymeridis, Jorge Fernandez Villena, Deepak Ramaswamy, Jacob White
  • Patent number: 10233109
    Abstract: A method for controlling wedge variation in a glass ribbon includes flowing molten glass over converging sides of a forming vessel, drawing a glass ribbon from a root of the forming vessel, measuring the wedge variation over at least a portion of the width of the glass ribbon, adjusting a tilt of the forming vessel and a temperature near a weir of the forming vessel based on the measured wedge variation to decrease the wedge variation over the width of the glass ribbon, and re-measuring the wedge variation over the portion of the width of the glass ribbon.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: March 19, 2019
    Assignee: CORNING INCORPORATED
    Inventor: Jeffrey Howard Ahrens
  • Patent number: 10222441
    Abstract: During operation, a system may apply an external magnetic field and an RF pulse sequence to a sample. Then, the system may measure at least a component of a magnetization associated with the sample, such as MR signals of one or more types of nuclei in the sample. Moreover, the system may calculate at least a predicted component of the magnetization for voxels associated with the sample based on the measured component of the magnetization, a forward model, the external magnetic field and the RF pulse sequence. Next, the system may solve an inverse problem by iteratively modifying the parameters associated with the voxels in the forward model until a difference between the predicted component of the magnetization and the measured component of the magnetization is less than a predefined value. Note that the calculations may be performed concurrently with the measurements and may not involve performing a Fourier transform.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: March 5, 2019
    Assignee: Q Bio, Inc.
    Inventors: Jeffrey Howard Kaditz, Athanasios Polymeridis, Jorge Fernandez Villena
  • Patent number: 10194829
    Abstract: During operation, a system iteratively captures MR signals of one or more types of nuclei in one or more portions of a biological lifeform based on scanning instructions that correspond to a dynamic scan plan. The MR signals in a given iteration may be associated with voxels having associated sizes at three-dimensional (3D) positions in at least a corresponding portion of the biological lifeform. If the system detects a potential anomaly when analyzing the MR signals from the given iteration, the system dynamically modifies the scan plan based on the detected potential anomaly, a medical history and/or an MR-scan history. Subsequent measurements of MR signals may be associated with the same or different: types of nuclei, portions of the biological lifeform, voxels sizes and/or 3D positions.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: February 5, 2019
    Assignee: Q Bio, Inc.
    Inventors: Jeffrey Howard Kaditz, Andrew Gettings Stevens
  • Publication number: 20190025280
    Abstract: A system performs one or more magnetic resonance (MR) measurements on at least a portion of a biological life form. Moreover, the system quantitatively simulates an MR response of at least the portion of the biological life form, and compares the one or more MR measurements and the quantitative simulation to obtain a first test result. Next, the system determines one or more additional medical tests to perform. In response, the system accesses the biological sample in storage, and performs the one or more additional medical tests on at least a second portion of the biological sample to obtain one or more additional test results. Furthermore, the system computes a second test result based at least in part on the first test result and the one or more additional test results, where the second test result has an improved accuracy relative to the first test result.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 24, 2019
    Applicant: Q Bio, Inc
    Inventors: Jeffrey Howard Kaditz, Andrew Gettings Stevens
  • Publication number: 20180297884
    Abstract: A glass manufacturing apparatus includes a glass former to form a glass ribbon from a quantity of molten material, a thermal sensor oriented to sense a temperature of the glass ribbon, and a processor programmed to estimate a thickness of the glass ribbon based on the sensed temperature from the thermal sensor. A method of manufacturing glass includes forming a glass ribbon from a quantity of molten material, sensing a temperature of the glass ribbon, and estimating a thickness of the glass ribbon based on the sensed temperature.
    Type: Application
    Filed: September 23, 2016
    Publication date: October 18, 2018
    Inventors: Tomohiro Aburada, Jeffrey Howard Ahrens, Steven Roy Burdette, Nanhu Chen
  • Publication number: 20180225424
    Abstract: A system that iteratively performs medical testing is described. During operation, the system receives a test result of a medical test performed on a biological sample associated with an individual, where the test result has an initial uncertainty. Then, the system determines, based on the test result, a second medical test to perform on a second biological sample associated with the individual, where the second biological sample was acquired prior to the biological sample. Moreover, the system performs the second medical test on the second biological sample to obtain a second test result of the second medical test. Next, the system computes a revised result for the medical test based on the test result and the second test result, where the revised result has a second uncertainty that is less than the initial uncertainty.
    Type: Application
    Filed: March 16, 2017
    Publication date: August 9, 2018
    Applicant: Q Bio, Inc
    Inventors: Jeffrey Howard Kaditz, Andrew Gettings Stevens
  • Patent number: 10020935
    Abstract: Systems and methods for securing or encrypting data or other information arising from a user's interaction with software and/or hardware, resulting in transformation of original data into ciphertext. Generally, the ciphertext is generated using context-based keys that depend on the environment in which the original data originated and/or was accessed. The ciphertext can be stored in a user's storage device or in an enterprise database (e.g., at-rest encryption) or shared with other users (e.g., cryptographic communication). The system generally allows for secure federation across organizations, including mechanisms to ensure that the system itself and any other actor with pervasive access to the network cannot compromise the confidentially of the protected data.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: July 10, 2018
    Assignee: Ionic Security Inc.
    Inventors: Adam Ghetti, Jeffrey Howard, James Jordan, Nicholas Smith, Jeremy Eckman, Ryan Speers, Sohaib Bhatti
  • Publication number: 20180168092
    Abstract: An apparatus for combining planting implements enables an operator of a tractor to use both a conventional cultivating implement and a conventional broadcasting implement simultaneously. The apparatus is rigidly affixed to a conventional cultivating implement and comprises a support frame, a pair of brackets, and a connection bar. In combination, the support frame, pair of brackets, and connection bar provide a three-point connection whereby a conventional broadcasting implement may be attached thereto, thus enabling an operator of a tractor to use both a conventional cultivating implement and a conventional broadcasting implement simultaneously. In operation, at least a portion of the conventional cultivating implement is disposed behind the conventional broadcasting implement when the conventional broadcasting implement is attached to the support frame, thereby allowing simultaneous cultivation and broadcasting of constituents.
    Type: Application
    Filed: February 19, 2018
    Publication date: June 21, 2018
    Inventor: Jeffrey Howard Cromwell
  • Patent number: 9958521
    Abstract: A system that determines an invariant magnetic-resonance (MR) signature of a biological sample is disclosed. During operation, the system determines a magnetic-resonance (MR) model of voxels in a biological sample based on differences between MR signals associated with the voxels in multiple scans and simulated MR signals. The MR signals are measured or captured by an MR scanner in the system during multiple MR scans, and based on scanning instructions, and the simulated MR signals for the biological sample are generated using the MR model and the scanning instructions. Moreover, the system iteratively modifies the scanning instructions (including a magnetic-field strength and/or a pulse sequence) in the MR scans based on the differences until a convergence criterion is achieved. Then, the system stores, in memory, an identifier of the biological sample and a magnetic-field-strength-invariant MR signature of the biological sample that is associated with the MR model.
    Type: Grant
    Filed: April 3, 2016
    Date of Patent: May 1, 2018
    Assignee: Q Bio, Inc.
    Inventors: Jeffrey Howard Kaditz, Andrew Gettings Stevens
  • Patent number: 9786010
    Abstract: Methods, systems, and computer readable media are disclosed for determining a homeowners insurance quote from a captured image of a dwelling. The captured image includes geotagged information, and the address of the dwelling is determined by reverse geocoding this information. An insurance premium quote may then be generated based on the reverse geocoded address and any additional risk assessment factors, such as the building characteristics. Verification of the address may also be performed by accessing one or more databases, which may store information including addresses, coordinates, and images associated with the address. The building characteristics may be retrieved from one or more of the databases to allow for quote generation with minimal user intervention. Matching properties having comparative quotes near the dwelling address may also be generated.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: October 10, 2017
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Timothy Kiper, Dwayne Taylor, Jeffrey Howard Abel, Amy Engelhorn
  • Publication number: 20170285123
    Abstract: During operation, a system may apply an external magnetic field and an RF pulse sequence to a sample. Then, the system may measure at least a component of a magnetization associated with the sample, such as MR signals of one or more types of nuclei in the sample. Moreover, the system may calculate at least a predicted component of the magnetization for voxels associated with the sample based on the measured component of the magnetization, a forward model, the external magnetic field and the RF pulse sequence. Next, the system may solve an inverse problem by iteratively modifying the parameters associated with the voxels in the forward model until a difference between the predicted component of the magnetization and the measured component of the magnetization is less than a predefined value. Note that the calculations may be performed concurrently with the measurements and may not involve performing a Fourier transform.
    Type: Application
    Filed: November 28, 2016
    Publication date: October 5, 2017
    Applicant: Q Bio, Inc
    Inventors: Jeffrey Howard Kaditz, Athanasios Polymeridis, Jorge Fernandez Villena, Deepak Ramaswamy, Jacob White
  • Publication number: 20170285122
    Abstract: During operation, a system may apply a polarizing field and an excitation sequence to a sample. Then, the system may measure a signal associated with the sample for a time duration that is less than a magnitude of a relaxation time associated with the sample. Next, the system may calculate the relaxation time based on a difference between the measured signal and a predicted signal of the sample, where the predicted signal is based on a forward model, the polarizing field and the excitation sequence. After modifying at least one of the polarizing field and the excitation sequence, the aforementioned operations may be repeated until a magnitude of the difference is less than a convergence criterion. Note that the calculations may be performed concurrently with the measurements and may not involve performing a Fourier transform on the measured signal.
    Type: Application
    Filed: November 28, 2016
    Publication date: October 5, 2017
    Applicant: Q Bio, Inc
    Inventors: Jeffrey Howard Kaditz, Athanasios Polymeridis, Jorge Fernandez Villena, Deepak Ramaswamy, Jacob White
  • Publication number: 20170228557
    Abstract: A computer system may perform substitutions for fields in a set of records, where performing a given substitution involves replacing a field in the set of records with a replacement field, and the substitutions remove the context information in the set of records while maintaining relevance of the set of records. Then, the computer system may generate an artificial set of records based, at least in part, on the set of records, where a given artificial record includes one or more modified portions of the set of records. Next, the computer system may combine the set of records and the artificial set of records into a second set of records, where at least some phrases or values in the second set of records are uniformly distributed.
    Type: Application
    Filed: April 27, 2017
    Publication date: August 10, 2017
    Applicant: Q Bio, Inc
    Inventors: Jeffrey Howard Kaditz, Andrew Gettings Stevens, David Grijalva