Patents by Inventor Jeffrey J. Cronick

Jeffrey J. Cronick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8091835
    Abstract: A propellant depot (40, 150) includes a utility box (42, 42?) that has space flight equipment. A propellant cartridge adaptor (95) is coupled to the utility box (42, 42?) and to an exchangeable propellant cartridge system (41). The propellant depot (40, 150) also includes a docking adaptor (44) for coupling to an approaching spacecraft (24). A controller (66) controls the transfer of propellant from within the exchangeable propellant cartridge system (41) to the spacecraft (24). A method of providing propellant to a spacecraft in space includes launching an orbital propellant depot (40, 150) into space. The spacecraft is docked to the orbital propellant depot (40, 150) in space. Propellant is transferred to the spacecraft. The spacecraft is separated from the orbital propellant depot (40, 150).
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: January 10, 2012
    Assignee: The Boeing Company
    Inventors: John W. Behrens, Frank O. Chandler, Jeffrey J. Cronick
  • Patent number: 8006938
    Abstract: An in-space spacecraft servicing system (10) includes a servicing spacecraft (22) and a propellant module (24). The servicing spacecraft includes a client servicing system (136), as well as navigation avionics (108) for independent flight operation and a servicing propellant tank (170). The propellant module moves the servicing module from an upper stage drop off location and releases it in proximity to a client spacecraft (16) for a servicing mission. It has a propellant tank (172) with capacity for multiple missions and is used to refill the servicing spacecraft's propellant tanks between missions. Either or both the servicing spacecraft and the propellant module may have navigation avionics. The servicing spacecraft also has a universal docking adaptor (70) for different client spacecraft, and can convert a client spacecraft from non-cooperative to cooperative.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: August 30, 2011
    Assignee: The Boeing Company
    Inventors: John W. Behrens, Thomas L. Kessler, Leora Peltz, Jeffrey J. Cronick, Glenn N. Caplin, Frank O. Chandler, Robert V. Frampton, Daniel E. Rivera
  • Publication number: 20110031352
    Abstract: An in-space spacecraft servicing system (10) includes a servicing spacecraft (22) and a propellant module (24). The servicing spacecraft includes a client servicing system (136), as well as navigation avionics (108) for independent flight operation and a servicing propellant tank (170). The propellant module moves the servicing module from an upper stage drop off location and releases it in proximity to a client spacecraft (16) for a servicing mission. It has a propellant tank (172) with capacity for multiple missions and is used to refill the servicing spacecraft's propellant tanks between missions. Either or both the servicing spacecraft and the propellant module may have navigation avionics. The servicing spacecraft also has a universal docking adaptor (70) for different client spacecraft, and can convert a client spacecraft from non-cooperative to cooperative.
    Type: Application
    Filed: September 23, 2010
    Publication date: February 10, 2011
    Applicant: THE BOEING COMPANY
    Inventors: John W. Behrens, Thomas L. Kessler, Leora Peltz, Jeffrey J. Cronick, Glenn N. Caplin, Frank O. Chandler, Robert V. Frampton, Daniel E. Rivera
  • Patent number: 7861975
    Abstract: An in-space spacecraft servicing system (10) includes a servicing spacecraft (22) and a propellant module (24). The servicing spacecraft includes a client servicing system (136), as well as navigation avionics (108) for independent flight operation and a servicing propellant tank (170). The propellant module moves the servicing module from an upper stage drop off location and releases it in proximity to a client spacecraft (16) for a servicing mission. It has a propellant tank (172) with capacity for multiple missions and is used to refill the servicing spacecraft's propellant tanks between missions. Either or both the servicing spacecraft and the propellant module may have navigation avionics. The servicing spacecraft also has a universal docking adaptor (70) for different client spacecraft, and can convert a client spacecraft from non-cooperative to cooperative.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: January 4, 2011
    Assignee: The Boeing Company
    Inventors: John W. Behrens, Thomas L. Kessler, Leora Peltz, Jeffrey J. Cronick, Glenn N. Caplin, Frank O. Chandler, Robert V. Frampton, Daniel E. Rivera
  • Patent number: 7823837
    Abstract: An in-space spacecraft servicing system (10) includes a servicing spacecraft (22) and a propellant module (24). The servicing spacecraft includes a client servicing system (136), as well as navigation avionics (108) for independent flight operation and a servicing propellant tank (170). The propellant module moves the servicing module from an upper stage drop off location and releases it in proximity to a client spacecraft (16) for a servicing mission. It has a propellant tank (172) with capacity for multiple missions and is used to refill the servicing spacecraft's propellant tanks between missions. Either or both the servicing spacecraft and the propellant module may have navigation avionics. The servicing spacecraft also has a universal docking adaptor (70) for different client spacecraft, and can convert a client spacecraft from non-cooperative to cooperative.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: November 2, 2010
    Assignee: The Boeing Company
    Inventors: John W. Behrens, Thomas L. Kessler, Leora Peltz, Jeffrey J. Cronick, Glenn N. Caplin, Frank O. Chandler, Robert V. Frampton, Daniel E. Rivera
  • Publication number: 20100012788
    Abstract: A propellant depot (40, 150) includes a utility box (42, 42?) that has space flight equipment. A propellant cartridge adaptor (95) is coupled to the utility box (42, 42?) and to an exchangeable propellant cartridge system (41). The propellant depot (40, 150) also includes a docking adaptor (44) for coupling to an approaching spacecraft (24). A controller (66) controls the transfer of propellant from within the exchangeable propellant cartridge system (41) to the spacecraft (24). A method of providing propellant to a spacecraft in space includes launching an orbital propellant depot (40, 150) into space. The spacecraft is docked to the orbital propellant depot (40, 150) in space. Propellant is transferred to the spacecraft. The spacecraft is separated from the orbital propellant depot (40, 150).
    Type: Application
    Filed: July 1, 2009
    Publication date: January 21, 2010
    Applicant: THE BOEING COMPANY
    Inventors: John W. Behrens, Frank O. Chandler, Jeffrey J. Cronick
  • Patent number: 7575200
    Abstract: A propellant depot (40, 150) includes a utility box (42, 42?) that has space flight equipment. A propellant cartridge adaptor (95) is coupled to the utility box (42, 42?) and to an exchangeable propellant cartridge system (41). The propellant depot (40, 150) also includes a docking adaptor (44) for coupling to an approaching spacecraft (24). A controller (66) controls the transfer of propellant from within the exchangeable propellant cartridge system (41) to the spacecraft (24). A method of providing propellant to a spacecraft in space includes launching an orbital propellant depot (40, 150) into space. The spacecraft is docked to the orbital propellant depot (40, 150) in space. Propellant is transferred to the spacecraft. The spacecraft is separated from the orbital propellant depot (40, 150).
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: August 18, 2009
    Assignee: The Boeing Company
    Inventors: John W. Behrens, Frank O. Chandler, Jeffrey J. Cronick
  • Patent number: 7413148
    Abstract: A cryocooler is located on a spacecraft bus, such as a bus box, separate from the cryogenic propellant tanks disposed on a separable and distinct propellant cartridge system spacecraft docked to the spacecraft bus. In operation, propellant may be continuously pumped from the tanks through the cryocooler cold heat exchanger and then back to the tanks on the separable propellant cartridge system spacecraft through temporarily couplable lines. After the propellant tanks are depleted, the propellant cartridge system is then undocked from the bus and typically discarded. A new propellant cartridge system spacecraft comprising a full set of tanks may then be docked to the bus and the cryocooler supply/return lines coupled. The remote cryocooler may function as part of a larger space depot for spacecraft resupply, although it is not limited to such applications.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: August 19, 2008
    Assignee: The Boeing Company
    Inventors: John W. Behrens, Frank O. Chandler, Jeffrey J. Cronick, Alfredo Lopez
  • Publication number: 20080121759
    Abstract: A cryocooler is located on a spacecraft bus, such as a bus box, separate from the cryogenic propellant tanks disposed on a separable and distinct propellant cartridge system spacecraft docked to the spacecraft bus. In operation, propellant may be continuously pumped from the tanks through the cryocooler cold heat exchanger and then back to the tanks on the separable propellant cartridge system spacecraft through temporarily couplable lines. After the propellant tanks are depleted, the propellant cartridge system is then undocked from the bus and typically discarded. A new propellant cartridge system spacecraft comprising a full set of tanks may then be docked to the bus and the cryocooler supply/return lines coupled. The remote cryocooler may function as part of a larger space depot for spacecraft resupply, although it is not limited to such applications.
    Type: Application
    Filed: April 5, 2006
    Publication date: May 29, 2008
    Applicant: The Boeing Company
    Inventors: John W. Behrens, Frank O. Chandler, Jeffrey J. Cronick, Alfredo Lopez
  • Patent number: 6666409
    Abstract: A returnable and reusable space vehicle including a main body separate from and releasably mounted to a booster rocket assembly. A crew compartment module is provided that is separate from and releasably mounted to the main body. A propellant system is operably coupled to the crew compartment module so as to propel the crew compartment module from the main body during an emergency procedure. An orientation control system is coupled to the propellant system such that the orientation control system maintains the crew compartment module in a predetermined attitude during the emergency procedure. A pair of aerodynamic lifting wings extend from the main body to provide aerodynamic lift the the main body to permit the main body to return from the orbit and land.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: December 23, 2003
    Assignee: The Boeing Company
    Inventors: Jon J. Carpenter, Jeffrey J. Cronick, Jennifer L. Green, Brian R. Lindley, James K. Wechsler, Thomas R. Smith
  • Publication number: 20030183727
    Abstract: A returnable and reusable space vehicle including a main body separate from and releasably mounted to a booster rocket assembly. A crew compartment module is provided that is separate from and releasably mounted to the main body. A propellant system is operably coupled to the crew compartment module so as to propel the crew compartment module from the main body during an emergency procedure. An orientation control system is coupled to the propellant system such that the orientation control system maintains the crew compartment module in a predetermined attitude during the emergency procedure. A pair of aerodynamic lifting wings extend from the main body to provide aerodynamic lift to the main body to permit the main body to return from the orbit and land.
    Type: Application
    Filed: February 26, 2003
    Publication date: October 2, 2003
    Inventors: Jon J. Carpenter, Jeffrey J. Cronick, Jennifer L. Green, Brian R. Lindley, James K. Wechsler, Thomas R. Smith
  • Patent number: 6568639
    Abstract: An orbit transfer vehicle for transporting cargo between a low Earth orbit and a higher Earth orbit having a body and an engine operably coupled to the body. A reaction control system is further provided and is operably coupled to the body. The reaction control system having a plurality of thrusters capable of maneuvering the orbit transfer vehicle. The orbit transfer vehicle further includes an energy absorbing panel operable to gather energy and an energy storage device operable to store the energy. Still further, a payload interface mechanism is provided having a payload container area and a payload retaining device. The payload retaining device is connectable to the cargo. Lastly, a controller for autonomously controlling the engine, the reaction control system, and the payload interface mechanism to control the orbit transfer vehicle so as to transport the cargo between a low Earth orbit to a higher Earth orbit.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: May 27, 2003
    Assignee: The Boeing Company
    Inventors: Jon J. Carpenter, Jeffrey J. Cronick, Jennifer L. Green, Brian R. Lindley, James K. Wechsler
  • Patent number: 6557803
    Abstract: A returnable and reusable space vehicle including a main body separate from and releasably mounted to a booster rocket assembly. A crew compartment module is provided that is separate from and releasably mounted to the main body. A propellant system is operably coupled to the crew compartment module so as to propel the crew compartment module from the main body during an emergency procedure. An orientation control system is coupled to the propellant system such that the orientation control system maintains the crew compartment module in a predetermined attitude during the emergency procedure. A pair of aerodynamic lifting wings extend from the main body to provide aerodynamic lift to the main body to permit the main body to return from the orbit and land.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: May 6, 2003
    Assignee: The Boeing Company
    Inventors: Jon J. Carpenter, Jeffrey J. Cronick, Jennifer L. Green, Brian R. Lindley, James K. Wechsler, Thomas R. Smith
  • Publication number: 20030042367
    Abstract: A returnable and reusable space vehicle including a main body separate from and releasably mounted to a booster rocket assembly. A crew compartment module is provided that is separate from and releasably mounted to the main body. A propellant system is operably coupled to the crew compartment module so as to propel the crew compartment module from the main body during an emergency procedure. An orientation control system is coupled to the propellant system such that the orientation control system maintains the crew compartment module in a predetermined attitude during the emergency procedure. A pair of aerodynamic lifting wings extend from the main body to provide aerodynamic lift to the main body to permit the main body to return from the orbit and land.
    Type: Application
    Filed: August 31, 2001
    Publication date: March 6, 2003
    Inventors: Jon J. Carpenter, Jeffrey J. Cronick, Jennifer L. Green, Brian R. Lindley, James K. Wechsler, Thomas R. Smith
  • Publication number: 20030042369
    Abstract: An orbit transfer vehicle for transporting cargo between a low Earth orbit and a higher Earth orbit having a body and an engine operably coupled to the body. A reaction control system is further provided and is operably coupled to the body. The reaction control system having a plurality of thrusters capable of maneuvering the orbit transfer vehicle. The orbit transfer vehicle further includes an energy absorbing panel operable to gather energy and an energy storage device operable to store the energy. Still further, a payload interface mechanism is provided having a payload container area and a payload retaining device. The payload retaining device is connectable to the cargo. Lastly, a controller for autonomously controlling the engine, the reaction control system, and the payload interface mechanism to control the orbit transfer vehicle so as to transport the cargo between a low Earth orbit to a higher Earth orbit.
    Type: Application
    Filed: August 31, 2001
    Publication date: March 6, 2003
    Inventors: Jon J. Carpenter, Jeffrey J. Cronick, Jennifer L. Green, Brian R. Lindley, James K. Wechsler