Patents by Inventor Jeffrey J. White

Jeffrey J. White has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240068333
    Abstract: A system and method for turning a well over to production. The method may include drilling a wellbore using a drillstring, casing the wellbore, fracturing a reservoir, drilling the wellbore to a plug back total depth using the drillstring to clean out the wellbore, and converting the drillstring from a drilling mode to a production mode.
    Type: Application
    Filed: August 28, 2023
    Publication date: February 29, 2024
    Inventors: Matthew L. White, Jeffrey Spencer, Brian B. Hope, Christopher J. Heikkinen
  • Patent number: 11681312
    Abstract: Aircraft power distribution systems and methods for regulating a system voltage in aircraft power distribution systems are described. An example system includes a first generator, a first power feeder, a second power feeder, a first load, a second load, and a plurality of contactors. The first power feeder and the second power feeder are coupled in parallel between the first generator and a power panel. The first load is coupled to the first power feeder, and the second load is coupled to the second power feeder. The plurality of contactors is configurable to transfer power in a first direction from the first generator to both the first load and the second load during a first mode of operation, and configurable to transfer power in a second direction from the power panel to the first load or the second load during a second mode of operation.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: June 20, 2023
    Assignee: The Boeing Company
    Inventor: Jeffrey J. White
  • Patent number: 11465759
    Abstract: On an aircraft, a multi-mode power generator is operated in a variable voltage mode to power an electric Wng Ice Prevention System (eWIPS), and is operated in a fixed voltage mode to provide backup power. When atmospheric conditions are conducive to the formation of ice (and main generators are operative), the multi-mode power generator is operated in variable voltage mode to power the eWIPS with a first or second variable voltage. The first variable voltage, the value of which depends on atmospheric conditions, is for anti-ice operation. The second variable voltage, which can be the maximum output voltage, is for de-ice operation. Transitions between different variable voltage levels are not instantaneous which eliminates fatigue damage due to transients. If a main generator fails (or when atmospheric conditions are not conducive to the formation of ice), the multi-mode power generator is operated in fixed voltage mode to provide backup power.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: October 11, 2022
    Assignee: THE BOEING COMPANY
    Inventor: Jeffrey J. White
  • Patent number: 11034463
    Abstract: An auxiliary power unit (APU) control system for an aircraft is disclosed and includes an APU, an air inlet having an effective area, an air inlet door moveable to vary the effective area of the air inlet, an actuator configured to move the air inlet door into a set position, one or more processors, and a memory coupled to the one or more processors. The memory stores data comprising a database and program code that, when executed by the one or more processors, causes the APU control system to receive one or more ambient signals indicative of an air density value. The system also determines the effective area of the air inlet based on the air density value. The system is further caused to instruct the actuator to move the air inlet door into the set position.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: June 15, 2021
    Assignee: The Boeing Company
    Inventor: Jeffrey J. White
  • Publication number: 20210126458
    Abstract: Aircraft power distribution systems and methods for regulating a system voltage in aircraft power distribution systems are described. An example system includes a first generator, a first power feeder, a second power feeder, a first load, a second load, and a plurality of contactors. The first power feeder and the second power feeder are coupled in parallel between the first generator and a power panel. The first load is coupled to the first power feeder, and the second load is coupled to the second power feeder. The plurality of contactors is configurable to transfer power in a first direction from the first generator to both the first load and the second load during a first mode of operation, and configurable to transfer power in a second direction from the power panel to the first load or the second load during a second mode of operation.
    Type: Application
    Filed: January 4, 2021
    Publication date: April 29, 2021
    Inventor: Jeffrey J. White
  • Patent number: 10988266
    Abstract: An auxiliary power unit (APU) control system for an aircraft is disclosed. The APU control system includes an APU, one or more processors, and a memory coupled to the one or more processors. The memory stores data comprising a database and program code that, when executed by the one or more processors, causes the APU control system to receive a one or more ambient signals indicative of an air density value and one or more power signals indicative of a specific amount of power generated by the APU. The APU control system is further caused to determine a variable rotational speed of the APU based on the air density value and instruct the APU to operate at the variable rotational speed. The APU continues to generate the specific amount of power when operating at the variable rotational speed.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: April 27, 2021
    Assignee: The Boeing Company
    Inventor: Jeffrey J. White
  • Patent number: 10974844
    Abstract: An auxiliary power unit (APU) control system for an aircraft is disclosed, and includes an APU drivingly coupled to one or more generators, one or more processors, and a memory coupled to the one or more processors. The memory stores data comprising a database and program code that, when executed by the one or more processors, causes the APU control system to receive one or more ambient signals indicative of an air density value and one or more power signals indicative of a specific amount of power generated by the APU. The system is further caused to determine a first variable rotational speed of the APU based on the air density value. The APU continues to generate the specific amount of power when operating at the first variable rotational speed. After instructing the APU to operate at the first variable rotational speed, the system receives an electrical load signal.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: April 13, 2021
    Assignee: The Boeing Company
    Inventor: Jeffrey J. White
  • Patent number: 10965125
    Abstract: Aircraft power distribution systems and methods for regulating a system voltage in aircraft power distribution systems are described. An example system includes a first generator, a first power feeder, a second power feeder, a first load, a second load, and a plurality of contactors. The first power feeder and the second power feeder are coupled in parallel between the first generator and a power panel. The first load is coupled to the first power feeder, and the second load is coupled to the second power feeder. The plurality of contactors is configurable to transfer power in a first direction from the first generator to both the first load and the second load during a first mode of operation, and configurable to transfer power in a second direction from the power panel to the first load or the second load during a second mode of operation.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: March 30, 2021
    Assignee: THE BOEING COMPANY
    Inventor: Jeffrey J. White
  • Publication number: 20200307822
    Abstract: An auxiliary power unit (APU) control system for an aircraft is disclosed and includes an APU, an air inlet having an effective area, an air inlet door moveable to vary the effective area of the air inlet, an actuator configured to move the air inlet door into a set position, one or more processors, and a memory coupled to the one or more processors. The memory stores data comprising a database and program code that, when executed by the one or more processors, causes the APU control system to receive one or more ambient signals indicative of an air density value. The system also determines the effective area of the air inlet based on the air density value. The system is further caused to instruct the actuator to move the air inlet door into the set position.
    Type: Application
    Filed: March 26, 2019
    Publication date: October 1, 2020
    Inventor: Jeffrey J. White
  • Publication number: 20200239155
    Abstract: An auxiliary power unit (APU) control system for an aircraft is disclosed. The APU control system includes an APU, one or more processors, and a memory coupled to the one or more processors. The memory stores data comprising a database and program code that, when executed by the one or more processors, causes the APU control system to receive a one or more ambient signals indicative of an air density value and one or more power signals indicative of a specific amount of power generated by the APU. The APU control system is further caused to determine a variable rotational speed of the APU based on the air density value and instruct the APU to operate at the variable rotational speed. The APU continues to generate the specific amount of power when operating at the variable rotational speed.
    Type: Application
    Filed: January 29, 2019
    Publication date: July 30, 2020
    Inventor: Jeffrey J. White
  • Publication number: 20200239156
    Abstract: An auxiliary power unit (APU) control system for an aircraft is disclosed, and includes an APU drivingly coupled to one or more generators, one or more processors, and a memory coupled to the one or more processors. The memory stores data comprising a database and program code that, when executed by the one or more processors, causes the APU control system to receive one or more ambient signals indicative of an air density value and one or more power signals indicative of a specific amount of power generated by the APU. The system is further caused to determine a first variable rotational speed of the APU based on the air density value. The APU continues to generate the specific amount of power when operating at the first variable rotational speed. After instructing the APU to operate at the first variable rotational speed, the system receives an electrical load signal.
    Type: Application
    Filed: January 29, 2019
    Publication date: July 30, 2020
    Inventor: Jeffrey J. White
  • Publication number: 20200017221
    Abstract: On an aircraft, a multi-mode power generator is operated in a variable voltage mode to power an electric Wng Ice Prevention System (eWIPS), and is operated in a fixed voltage mode to provide backup power. When atmospheric conditions are conducive to the formation of ice (and main generators are operative), the multi-mode power generator is operated in variable voltage mode to power the eWIPS with a first or second variable voltage. The first variable voltage, the value of which depends on atmospheric conditions, is for anti-ice operation. The second variable voltage, which can be the maximum output voltage, is for de-ice operation. Transitions between different variable voltage levels are not instantaneous which eliminates fatigue damage due to transients. If a main generator fails (or when atmospheric conditions are not conducive to the formation of ice), the multi-mode power generator is operated in fixed voltage mode to provide backup power.
    Type: Application
    Filed: July 13, 2018
    Publication date: January 16, 2020
    Inventor: Jeffrey J. White
  • Publication number: 20200021111
    Abstract: Aircraft power distribution systems and methods for regulating a system voltage in aircraft power distribution systems are described. An example system includes a first generator, a first power feeder, a second power feeder, a first load, a second load, and a plurality of contactors. The first power feeder and the second power feeder are coupled in parallel between the first generator and a power panel. The first load is coupled to the first power feeder, and the second load is coupled to the second power feeder. The plurality of contactors is configurable to transfer power in a first direction from the first generator to both the first load and the second load during a first mode of operation, and configurable to transfer power in a second direction from the power panel to the first load or the second load during a second mode of operation.
    Type: Application
    Filed: July 11, 2018
    Publication date: January 16, 2020
    Inventor: Jeffrey J. White
  • Patent number: 9588535
    Abstract: An apparatus and method for resetting a motor controller. It is determined whether a tripping of the motor controller is accompanied by an undesired condition elsewhere in a power system wherein an alternating current bus receives alternating current power from a generator, a power converter converts the alternating current power on the alternating current bus to direct current power on a direct current bus, and the direct current power on the direct current bus powers the motor controller. In response to a determination that the tripping of the motor controller is accompanied by the undesired condition, it is determined whether the undesired condition is less than a threshold for more than a time delay. The motor controller is reset in response to a determination that the undesired condition is less than the threshold for more than the time delay.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: March 7, 2017
    Assignee: THE BOEING COMPANY
    Inventors: Eugene V. Solodovnik, Jeffrey J. White
  • Patent number: 9112343
    Abstract: A shielded power feeder system may include at least one unshielded power feeder conductor having first and second ends, a neutral conductor positioned adjacent the power feeder conductor, the power feeder conductor and neutral conductor forming a bundle, and the neutral conductor having a grounded conductive shield.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: August 18, 2015
    Assignee: The Boeing Company
    Inventors: Jeffrey J. White, Corneliu Michaels, John Kemp Erdelyan, Ourania Koukousoula, Yousif Bitti, Michael C. Dosch
  • Patent number: 9036323
    Abstract: A system for lightning protection for power feeders may include at least one unshielded power feeder conductor; and a grounded wire extending adjacent the at least one unshielded power feeder conductor and being electrically isolated therefrom, whereby lightning current flowing through the grounded wire establishes a magnetic field sufficient to oppose and reduce lightning-induced current on the at least one power feeder conductor.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: May 19, 2015
    Assignee: The Boeing Company
    Inventor: Jeffrey J. White
  • Patent number: 8933771
    Abstract: According to an embodiment, a transformer is provided that includes a first conductive coil wound about a first coil axis and a second conductive coil wound about a second coil axis. The second conductive coil is disposed proximate to the first conductive coil and the second coil axis is substantially parallel to the first coil axis. A closed-loop conductive winding is disposed proximate to the first conductive coil and the second conductive coil. The closed-loop conductive winding is wound about a loop axis at least one time where the loop axis is substantially parallel to the first coil axis and the second coil axis.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: January 13, 2015
    Assignee: The Boeing Company
    Inventors: Jian Huang, Jeffrey J. White
  • Publication number: 20140303800
    Abstract: An apparatus and method for resetting a motor controller. It is determined whether a tripping of the motor controller is accompanied by an undesired condition elsewhere in a power system wherein an alternating current bus receives alternating current power from a generator, a power converter converts the alternating current power on the alternating current bus to direct current power on a direct current bus, and the direct current power on the direct current bus powers the motor controller. In response to a determination that the tripping of the motor controller is accompanied by the undesired condition, it is determined whether the undesired condition is less than a threshold for more than a time delay. The motor controller is reset in response to a determination that the undesired condition is less than the threshold for more than the time delay.
    Type: Application
    Filed: June 23, 2014
    Publication date: October 9, 2014
    Inventors: Eugene V. Solodovnik, Jeffrey J. White
  • Patent number: 8760094
    Abstract: An apparatus and method for protecting a power system comprising a generator providing power to an alternating current bus, a power converter for converting alternating current power on the alternating current bus to direct current power on a direct current bus, and a direct current load powered by the direct current power on the direct current bus. An undesired condition is identified at the input to the power converter from the alternating current bus. The undesired condition is caused by at least one of the power converter, the direct current bus, or the load. The power converter is disconnected from the alternating current bus in response to identifying the undesired condition for at least a time delay. The time delay is selected such that the power converter is disconnected from the alternating current bus before the alternating current bus is disconnected from the generator due to the undesired condition.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: June 24, 2014
    Assignee: The Boeing Company
    Inventors: Eugene V. Solodovnik, Jeffrey J. White
  • Publication number: 20140022037
    Abstract: According to an embodiment, a transformer is provided that includes a first conductive coil wound about a first coil axis and a second conductive coil wound about a second coil axis. The second conductive coil is disposed proximate to the first conductive coil and the second coil axis is substantially parallel to the first coil axis. A closed-loop conductive winding is disposed proximate to the first conductive coil and the second conductive coil. The closed-loop conductive winding is wound about a loop axis at least one time where the loop axis is substantially parallel to the first coil axis and the second coil axis.
    Type: Application
    Filed: September 23, 2013
    Publication date: January 23, 2014
    Applicant: The Boeing Company
    Inventors: Jian Huang, Jeffrey J. White