Patents by Inventor Jeffrey John Kolstad

Jeffrey John Kolstad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170066870
    Abstract: A polyester, including ethylene 2,5-furandicarboxylate units, has an intrinsic viscosity of at least 0.45 d L/g, and has a relative content of carboxylic acid end groups, expressed as the fraction of the molar amount of carboxylic acid end groups divided by the sum of the molar amounts of hydroxyl end groups and carboxylic acid end groups in the range of 0.10 to 0.70. The polyester can be prepared with a method wherein a starting mixture comprising 2,5-furandicarboxylic acid and ethylene glycol is subjected to esterification and subsequent polycondensation at reduced pressure when the molar ratio of 2,5-furandicarboxylic acid to ethylene glycol in the starting mixture is 1:1.01 to 1:1.15, where water, that is formed during the reaction between 2,5-furandicarboxylic acid and ethylene glycol, and some ethylene glycol are removed in a distillation system, and where ethylene glycol that is removed with water, is separated from water and at least partly recycled.
    Type: Application
    Filed: March 11, 2015
    Publication date: March 9, 2017
    Applicant: Furanix Technologies B.V.
    Inventors: Jeffrey John Kolstad, Gerardus Johannes Maria Gruter, Matheus Adrianus Dam, Bing Wang, Robert Joseph Schiavone, Marion L. Andrews, Jesper Gabriël van Berkel, Edward E. Paschke
  • Publication number: 20170066875
    Abstract: A polyester-containing object, such as an injection stretch blow moulded bottle, a biaxially oriented film or a drawn fibre, is made from melt-processing poly(ethylene-2,5-furandicarboxylate). The poly(ethylene-2,5-furandicarboxylate) has a number average molecular weight of at least 25,000, as determined by GPC based on polystyrene standards, and includes an antimony catalyst.
    Type: Application
    Filed: November 16, 2016
    Publication date: March 9, 2017
    Applicant: Furanix Technologies B.V.
    Inventors: Laszlo Sipos, Gerardus Johannes Maria Gruter, Jeffrey John Kolstad, Matheus Adrianus Dam
  • Publication number: 20170015781
    Abstract: The molecular weight of a semi-crystalline starting polyester comprising ethylene 2,5-furandicarboxylate units is enhanced by heating the semi-crystalline starting polyester, having a melting point Tm, at a temperature in the range of (Tm-40° C.) to Tm to obtain a solid stated polyester, where the semi-crystalline starting polyester has an intrinsic viscosity of at least 0.45 dL/g, and an amount of carboxylic acid end groups in the range of 15 to 122 meq/kg.
    Type: Application
    Filed: March 11, 2015
    Publication date: January 19, 2017
    Applicant: Furanix Technologies B.V.
    Inventors: Jeffrey John Kolstad, Gerardus Johannes Maria Gruter, Matheus Adrianus Dam, Jesper Gabriël van Berkel, Robert Joseph Schiavone, Marion L. Andrews
  • Publication number: 20170015780
    Abstract: A polyester, including ethylene 2,5-furandicarboxylateunits, also includes diethylene glycol residues, the content of which is less than 0.045, in moles per mole of 2,5-furandicarboxylate moieties. The polyester composition can be prepared with a method where a starting mixture is subjected to esterification of 2,5-furandicarboxylic acid or transesterification of an ester thereof with ethylene glycol in the presence of a basic compound and/or an ammonium compound capable of suppressing the formation of diethylene glycol.
    Type: Application
    Filed: March 11, 2015
    Publication date: January 19, 2017
    Applicant: Furanix Technologies B.V.
    Inventors: Jeffrey John Kolstad, Bing Wang, Robert Joseph Schiavone, Marion L. Andrews, Jesper Gabriël van Berkel, Edward E. Paschke
  • Patent number: 9527954
    Abstract: A process for preparing a polymer having a 2,5-furandicarboxylate moiety within the polymer backbone, and having a number average molecular weight of at least 25,000, includes a transesterification step, a polycondensation step, a drying and/or crystallizing step, and a step where the polymer is subjected to post condensation conditions, and to a polyester-containing bottle or film or fiber-containing woven or non-woven object made from melt-processing poly(ethylene-2,5-furandicarboxylate), where the poly(ethylene-2,5-furandicarboxylate) is obtainable by the process of the invention.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: December 27, 2016
    Assignee: Furanix Technologies B.V.
    Inventors: Laszlo Sipos, Gerardus Johannes Maria Gruter, Jeffrey John Kolstad, Matheus Adrianus Dam
  • Publication number: 20160138193
    Abstract: A fiber comprising polyethylene-2,5-furan-dicarboxylate, is prepared by melt spinning in a process wherein a molten composition comprising polyethylene-2,5-furan-dicarboxylate having an intrinsic viscosity of at least 0.55 dl/g, determined in dichloroacetic acid at 25° C., is passed through one or more spinning openings to yield molten threads; wherein the molten threads are cooled to below the melting temperature of the composition to yield spun fibers; and wherein the spun fibers are drawn to a linear density in the range of 0.05 to 2.0 tex per fiber. The invention also proves a fiber comprising polyethylene-2,5-furan-dicarboxylate having a linear density of 0.05 to 2.0 tex, wherein the polyethylene-2,5-furan-dicarboxylate has an intrinsic viscosity of at least 0.45 dl/g, determined in dichloroacetic acid at 25° C.
    Type: Application
    Filed: June 20, 2014
    Publication date: May 19, 2016
    Applicant: FURANIX TECHNOLOGIES B.V.
    Inventors: Jeffrey John KOLSTAD, Gerardus Johannes Maria GRUTER
  • Publication number: 20140336349
    Abstract: A process for preparing a polymer having a 2,5-furandicarboxylate moiety within the polymer backbone, and having a number average molecular weight of at least 25,000, includes a transesterification step, a polycondensation step, a drying and/or crystallizing step, and a step where the polymer is subjected to post condensation conditions, and to a polyester-containing bottle or film or fibre-containing woven or non-woven object made from melt-processing poly(ethylene-2,5-furandicarboxylate), where the poly(ethylene-2,5-furandicarboxylate) is obtainable by the process of the invention.
    Type: Application
    Filed: October 24, 2012
    Publication date: November 13, 2014
    Inventors: Laszlo Sipos, Gerardus Johannes Maria Gruter, Jeffrey John Kolstad, Matheus Adrianus Dam
  • Patent number: 8377353
    Abstract: Conjugate fibers are prepared in which at least one segment is a mixture of a high-D PLA resin and a high-L PLA resin. These segments have crystallites having a crystalline melting temperature of at least 200° C. At least one other segment is a high-D PLA resin or a high-L PLA resin. The conjugate fibers may be, for example, bicomponent, multi-component, islands-in-the-sea or sheath-and-core types. Specialty fibers of various types can be made through further downstream processing of these conjugate fibers.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: February 19, 2013
    Assignee: NatureWorks LLC
    Inventors: Robert A. Green, Chad Henry Kamann, Jeffrey John Kolstad, Christopher M. Ryan
  • Patent number: 8182725
    Abstract: PLA stereocomplex fibers are made by separately melting a high-D PLA starting resin and a high-L starting resin, mixing the melts and spinning the molten mixture. Subsequent heat treatment introduces high-melting “stereocomplex” crystallinity into the fibers. The process can form fibers having a high content of “stereocomplex” crystallites that have a high melting temperature. As a result, the fibers have excellent thermal resistance. The process is also easily adaptable to commercial melt spinning operations.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: May 22, 2012
    Assignee: NatureWorks LLC
    Inventors: Robert A. Green, Chad Henry Kamann, Jeffrey John Kolstad
  • Publication number: 20100308494
    Abstract: PLA stereocomplex fibers are made by separately melting a high-D PLA starting resin and a high-L starting resin, mixing the melts and spinning the molten mixture. Subsequent heat treatment introduces high-melting “stereocomplex” crystallinity into the fibers. The process can form fibers having a high content of “stereocomplex” crystallites that have a high melting temperature. As a result, the fibers have excellent thermal resistance. The process is also easily adaptable to commercial melt spinning operations.
    Type: Application
    Filed: September 26, 2008
    Publication date: December 9, 2010
    Inventors: Robert A. Green, Chad Henry Kamann, Jeffrey John Kolstad
  • Publication number: 20100221471
    Abstract: Conjugate fibers are prepared in which at least one segment is a mixture of a high-D PLA resin and a high-L PLA resin. These segments have crystallites having a crystalline melting temperature of at least 200° C. At least one other segment is a high-D PLA resin or a high-L PLA resin. The conjugate fibers may be, for example, bicomponent, multi-component, islands-in-the-sea or sheath-and-core types. Specialty fibers of various types can be made through further downstream processing of these conjugate fibers.
    Type: Application
    Filed: September 26, 2008
    Publication date: September 2, 2010
    Inventors: Robert A. Green, Chad Henry Kamann, Jeffrey John Kolstad, Christopher M. Ryan
  • Publication number: 20090176286
    Abstract: The invention herein is an efficient, flexible biomass fractionation process comprising digesting a lignocellulosic-biomass material at about 120-220° C. and a pH of less than about 4, in an aqueous mixture containing an effective concentration of at least one solvent for lignin, and separating to recover a solid phase that contains a large fraction of the cellulose originally in the starting lignocellulosic material and a liquid phase that contains most of the lignin and hemicellulose originally in the starting lignocellulosic biomass. The process can produce a solid phase that contains at least 75% cellulose and less than 10% lignin. The cellulose-rich solid product can be converted very efficiently to glucose. The solid product can also be used in commercial pulp applications, such as papermaking or fluff pulp. Hemicellulose sugars and lignin can be used directly or converted to other products.
    Type: Application
    Filed: November 15, 2006
    Publication date: July 9, 2009
    Inventors: Ryan P. O'Connor, Robert Wooley, Jeffrey John Kolstad, Robert Thomas Kean, David A. Glassner, Beth Mastel, Jon Michael Ritzenthaler, Robert Henry Birk, Jeffrey Warwick, James R. Hettenhaus, Rebecca Kerin Brooks
  • Patent number: 6495631
    Abstract: The invention is directed toward melt-processable lactide polymer compositions, processes for manufacturing these compositions, and articles made from these compositions. The compositions include a first phase, which contains a polylactide-based polymer, and a second phase which includes elastomer. The elastomer is present in an amount sufficient to provide a polymer composition having an impact resistance of at least about 0.7 ft-lb/in. after the melt-processable polymer composition has been injection molded into bars and tested according to ASTM D256 (1993) method C. Preferably, the compositions also include a reactive compatibilizing agent. Methods of making these compositions and articles made from these compositions are also disclosed.
    Type: Grant
    Filed: April 12, 1999
    Date of Patent: December 17, 2002
    Assignee: Cargill, Incorporated
    Inventors: Jed Richard Randall, Christopher Michael Ryan, James Lunt, Mark Henry Hartman, Eric Stanley Hall, Jeffrey John Kolstad, David Roy Witzke
  • Patent number: 6326458
    Abstract: A process for the continuous production of substantially purified lactide and lactide polymers from lactic acid or an ester of lactic acid including the steps of forming crude polylactic acid, preferably in the presence of a catalyst means in the case of the ester of lactic acid, to form a condensation reaction by-product and polylactic acid, and depolymerizing the polylactic acid in a lactide reactor to form crude lactide, followed by subsequent purification of the crude lactide in a distillation system. A purified lactide is then polymerized to form lactide polymers.
    Type: Grant
    Filed: October 7, 1993
    Date of Patent: December 4, 2001
    Assignee: Cargill, Inc.
    Inventors: Patrick Richard Gruber, Eric Stanley Hall, Jeffrey John Kolstad, Matthew Lee Iwen, Richard Douglas Benson, Ronald Leo Borchardt
  • Patent number: 6312823
    Abstract: A compostable multilayer film includes a core layer having a first surface and a second surface, a first blocking reducing layer covering the first surface of the core layer, and a second blocking reducing layer covering the second surface of the core layer. The core layer comprises a lactic acid residue-containing polymer having a glass transition temperature (Tg) below 20° C. At least one of the first and second blocking reducing layers comprise a semicrystalline aliphatic polyester. The core layer may be peroxide modified polylactide polymer which exhibits bridging between polylactide polymer chains.
    Type: Grant
    Filed: September 29, 1998
    Date of Patent: November 6, 2001
    Assignee: Cargrill, Incorporated
    Inventors: Ali Zakareya El-Afandi, Patrick Richard Gruber, Jeffrey John Kolstad, James Lunt, Christopher M. Ryan, James Zakareya Nangeroni, Nancy Uzelac Buehler, Mark Hartmann, Jed Richard Randall, Andrea Lee Brosch
  • Patent number: 6291597
    Abstract: A composition comprising a polylactide polymer with improved extensional viscosity and methods of making the same are disclosed. The polylactide polymer composition is prepared by providing in the composition polylactide polymer molecules which have been modified, relative to linear non-substituted polylactide, to provide increased molecular interaction among polylactide backbone chains in the composition. The preferred polylactide polymer composition has a number average molecular weight of at least about 10,000 (preferably at least 50,000) and a polydispersity of at least about 2.5. In addition, the polylactide polymer composition should have a neck-in ratio of less than about 0.8.
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: September 18, 2001
    Assignee: Cargill, Incorporated
    Inventors: Patrick Richard Gruber, Jeffrey John Kolstad, David Roy Witzke, Mark Henry Hartmann, Andrea Lee Brosch
  • Patent number: 6277951
    Abstract: A process for the continuous production of polylactide polymers from lactic acid which incorporates removal of water or a solvent carrier to concentrate the lactic acid feed followed by polymerization to a low-molecular-weight prepolymer. This prepolymer is fed to a reactor in which a catalyst is added to facilitate generation of lactide, the depolymerization product of polylactic acid. The lactide generated is continuously fed to a distillation system as a liquid or vapor wherein water and other impurities are removed. The resultant purified liquid lactide is fed directly to a polymerization process.
    Type: Grant
    Filed: July 13, 1999
    Date of Patent: August 21, 2001
    Assignee: Cargill, Incorporated
    Inventors: Patrick Richard Gruber, Eric Stanley Hall, Jeffrey John Kolstad, Matthew Lee Iwen, Richard Douglas Benson, Ronald Leo Borchardt
  • Patent number: 6207792
    Abstract: An amorphous film comprised of a lactide polymer. The lactide polymer comprises a plurality of poly(lactide) polymer chains, residual lactide in concentration of less than about 2 percent and water in concentration of less than about 2000 parts-per-million. A process for manufacturing an amorphous film with the lactide polymer composition is also disclosed.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: March 27, 2001
    Assignee: Cargill, Incorporated
    Inventors: Patrick Richard Gruber, Jeffrey John Kolstad, Christopher M. Ryan, Eric Stanley Hall, Robin Sue Eichen Conn
  • Patent number: 6197380
    Abstract: A lactide polymer coating resulting in a strong, repulpable, high gloss, paper coating. The lactide polymer comprises a plurality of poly(lactide) polymer chains, residual lactide in concentration of less than about 5 percent and water in concentration of less than about 2000 parts-per-million. A process for coating paper with the lactide polymer composition is also disclosed.
    Type: Grant
    Filed: April 6, 1999
    Date of Patent: March 6, 2001
    Assignee: Cargill, Incorporated
    Inventors: Patrick Richard Gruber, Jeffrey John Kolstad, Christopher M. Ryan, Eric Stanley Hall, Robin Sue Eichen Conn
  • Patent number: 6143863
    Abstract: A lactide polymer composition combining compositional and purity limitations and catalyst optimization or addition of stabilizing agents resulting in a melt-stable polymer is disclosed. The melt-stable lactide polymer comprises a plurality of polylactide polymer chains, residual lactide in concentration of less than 2 percent and water in concentration of less than 1000 parts-per-million. A stabilizing agent in an amount sufficient to reduce depolymerization of the lactide polymer during melt-processing or alternatively, control of catalyst level at a molar ratio of monomer to catalyst greater than 3000:1 is also included in the melt-stable composition. A process for manufacture of a melt-stable lactide polymer composition includes polymerizing a lactide mixture and adding stabilizing agents sufficient to reduce depolymerization of the polylactide during melt-processing, followed by devolatilizing the polylactide to remove monomer and water.
    Type: Grant
    Filed: May 11, 1999
    Date of Patent: November 7, 2000
    Assignee: Cargill, Incorporated
    Inventors: Patrick Richard Gruber, Jeffrey John Kolstad, Eric Stanley Hall, Robin Sue Eichen Conn, Christopher M. Ryan