Patents by Inventor Jeffrey Kenneth Emery

Jeffrey Kenneth Emery has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9246626
    Abstract: A network operating system NOS for an agile optical network with a plurality of mesh interconnected switching nodes, manages the network using an object-oriented network information model. The model is common to all applications requiring the data stored in the network managed information base. The core model can be expanded for serving specific application areas. The NOS is organized in layers, at the optical module level, connection level and network level. A distributed topology server DTS organizes the physical, logical and topological data defining all network entities as managed objects MO and topology objects TO for constructing a complete network view. The network information model associates a network element NE information model, specified by managed objects MO and a topological information model, specified by topology objects TO.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: January 26, 2016
    Assignee: Alcatel Lucent
    Inventors: Guy Claude Fortin, Markus Messenschmidt, Jeffrey Kenneth Emery, Hock Gin Lim, Ralph Stemmer
  • Patent number: 8489890
    Abstract: A system and methods for coordinating the operation of a client security module and a host security module on a mobile electronic device. The modules communicate with each other through a platform abstraction layer using application programming interfaces to coordinate their activities. In particular, on start-up of the device, the host security module obtains user authorization input from a user and passes the input to a client operating system for validation. Once validated, the host security module unlocks the host-side of the device. At the same time, the client operating system sends a notice or request to the client-side virtual machine requesting that the client-side be unlocked. Once the virtual machine is initialized and available it launches the client security module and unlocks the client-side. During the delay while the virtual machine loads, the user is given access only to the host applications.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: July 16, 2013
    Assignee: Research In Motion Limited
    Inventors: Sriram Darbha, Melanie Barker, Jeffrey Kenneth Emery
  • Publication number: 20120317618
    Abstract: A system and methods for coordinating the operation of a client security module and a host security module on a mobile electronic device. The modules communicate with each other through a platform abstraction layer using application programming interfaces to coordinate their activities. In particular, on start-up of the device, the host security module obtains user authorization input from a user and passes the input to a client operating system for validation. Once validated, the host security module unlocks the host-side of the device. At the same time, the client operating system sends a notice or request to the client-side virtual machine requesting that the client-side be unlocked. Once the virtual machine is initialized and available it launches the client security module and unlocks the client-side. During the delay while the virtual machine loads, the user is given access only to the host applications.
    Type: Application
    Filed: August 21, 2012
    Publication date: December 13, 2012
    Applicant: RESEARCH IN MOTION LIMITED
    Inventors: Sriram DARBHA, Melanie BARKER, Jeffrey Kenneth EMERY
  • Patent number: 8250371
    Abstract: A system and methods for coordinating the operation of a client security module and a host security module on a mobile electronic device. The modules communicate with each other through a platform abstraction layer using application programming interfaces to coordinate their activities. In particular, on start-up of the device, the host security module obtains user authorization input from a user and passes the input to a client operating system for validation. Once validated, the host security module unlocks the host-side of the device. At the same time, the client operating system sends a notice or request to the client-side virtual machine requesting that the client-side be unlocked. Once the virtual machine is initialized and available it launches the client security module and unlocks the client-side. During the delay while the virtual machine loads, the user is given access only to the host applications.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: August 21, 2012
    Assignee: Research In Motion Limited
    Inventors: Sriram Darbha, Melanie Barker, Jeffrey Kenneth Emery
  • Patent number: 8165466
    Abstract: The network operating system includes an embedded platform for controlling operation of an agile optical network at the physical layer level. At the module embedded level, each module (card-pack) is provided with an embedded controller EC that monitors and control operation of the optical modules. At the next level, each shelf is provided with a shelf processor SP that monitors and control operation of the ECs over a backplane network. All optical modules are connected over an optical trace channel to send/receive trace messages that can then be used to determine network connectivity. At the next, link management level, a network services controller NSC controls the SPs in a negotiated span of control, over a link network. The control is address-based; each NSC receives ranges of addresses for the entities in its control, and distributes these addresses to the SPs, which in turn distribute addresses to the ECs in their control.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: April 24, 2012
    Assignee: Alcatel Lucent
    Inventors: Jeffrey Kenneth Emery, Guy Claude Fortin, Markus Messerschmidt, Paul Edward Beer, Robert George Alexander Craig, Hock Gin Lim, Youxun Duan
  • Publication number: 20100293606
    Abstract: A system and methods for coordinating the operation of a client security module and a host security module on a mobile electronic device. The modules communicate with each other through a platform abstraction layer using application programming interfaces to coordinate their activities. In particular, on start-up of the device, the host security module obtains user authorization input from a user and passes the input to a client operating system for validation. Once validated, the host security module unlocks the host-side of the device. At the same time, the client operating system sends a notice or request to the client-side virtual machine requesting that the client-side be unlocked. Once the virtual machine is initialized and available it launches the client security module and unlocks the client-side. During the delay while the virtual machine loads, the user is given access only to the host applications.
    Type: Application
    Filed: July 27, 2010
    Publication date: November 18, 2010
    Applicant: RESEARCH IN MOTION LIMITED
    Inventors: Sriram Darbha, Melanie Barker, Jeffrey Kenneth Emery
  • Publication number: 20100247096
    Abstract: The network operating system includes an embedded platform for controlling operation of an agile optical network at the physical layer level. At the module embedded level, each module (card-pack) is provided with an embedded controller EC that monitors and control operation of the optical modules. At the next level, each shelf is provided with a shelf processor SP that monitors and control operation of the ECs over a backplane network. All optical modules are connected over an optical trace channel to send/receive trace messages that can then be used to determine network connectivity. At the next, link management level, a network services controller NSC controls the SPs in a negotiated span of control, over a link network. The control is address-based; each NSC receives ranges of addresses for the entities in its control, and distributes these addresses to the SPs, which in turn distribute addresses to the ECs in their control.
    Type: Application
    Filed: May 17, 2010
    Publication date: September 30, 2010
    Inventors: Jeffrey Kenneth Emery, Guy Claude Fortin, Markus Messerschmidt, Paul Edward Beer, Robert George Alexander Craig, Hock Gin Lim, Youxun Duan
  • Patent number: 7784088
    Abstract: A system and methods for coordinating the operation of a client security module and a host security module on a mobile electronic device. The modules communicate with each other through a platform abstraction layer using application programming interfaces to coordinate their activities. In particular, on start-up of the device, the host security module obtains user authorization input from a user and passes the input to a client operating system for validation. Once validated, the host security module unlocks the host-side of the device. At the same time, the client operating system sends a notice or request to the client-side virtual machine requesting that the client-side be unlocked. Once the virtual machine is initialized and available it launches the client security module and unlocks the client-side. During the delay while the virtual machine loads, the user is given access only to the host applications.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: August 24, 2010
    Assignee: Research in Motion Limited
    Inventors: Sriram Darbha, Melanie Barker, Jeffrey Kenneth Emery
  • Patent number: 7747165
    Abstract: The network operating system includes an embedded platform for controlling operation of an agile optical network at the physical layer level. At the module embedded level, each module (card-pack) is provided with an embedded controller EC that monitors and control operation of the optical modules. At the next level, each shelf is provided with a shelf processor SP that monitors and control operation of the ECs over a backplane network. All optical modules are connected over an optical trace channel to send/receive trace messages that can then be used to determine network connectivity. At the next, link management level, a network services controller NSC controls the SPs in a negotiated span of control, over a link network. The control is address-based; each NSC receives ranges of addresses for the entities in its control, and distributes these addresses to the SPs, which in turn distribute addresses to the ECs in their control.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: June 29, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Jeffrey Kenneth Emery, Guy Claude Fortin, Markus Messerschmidt, Paul Edward Beer, Robert George Alexander Craig, Hock Gin Lim, Youxun Duan
  • Publication number: 20080212963
    Abstract: A network operating system NOS for an agile optical network with a plurality of mesh interconnected switching nodes, manages the network using an object-oriented network information model. The model is common to all applications requiring the data stored in the network managed information base. The core model can be expanded for serving specific application areas. The NOS is organized in layers, at the optical module level, connection level and network level. A distributed topology server DTS organizes the physical, logical and topological data defining all network entities as managed objects MO and topology objects TO for constructing a complete network view. The network information model associates a network element NE information model, specified by managed objects MO and a topological information model, specified by topology objects TO.
    Type: Application
    Filed: July 17, 2007
    Publication date: September 4, 2008
    Inventors: Guy Claude Fortin, Markus Messenschmidt, Jeffrey Kenneth Emery, Hock Gin Lim, Ralph Stemmer
  • Patent number: 7263290
    Abstract: A network operating system NOS for an agile optical network with a plurality of mesh interconnected switching nodes, manages the network using an object-oriented network information model. The model is common to all applications requiring the data stored in the network managed information base. The core model can be expanded for serving specific application areas. The NOS is organized in layers, at the optical module level, connection level and network level. A distributed topology server DTS organizes the physical, logical and topological data defining all network entities as managed objects MO and topology objects TO for constructing a complete network view. The network information model associates a network element NE information model, specified by managed objects MO and a topological information model, specified by topology objects TO.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: August 28, 2007
    Assignee: Lucent Technologies Inc.
    Inventors: Guy Claude Fortin, Markus Messenschmidt, Jeffrey Kenneth Emery, Hock Gin Lim, Ralph Stemmer
  • Publication number: 20040120706
    Abstract: The first step in isolating a soft fault within a transparent network is to determine which OMS trail is causing the fault. This can be accomplished by forcing regeneration at a flexibility point, which permits the estimation of the signal quality using a BER measurement. The preferred mechanism for segmenting Och faults to an OMS/trail is eavesdropping, using dedicated tunable filters and receivers or spare test tunable filters and receivers at network flexibility sites. Once the fault has been isolated to a specific OMS trail, analog tools are used to further isolate the fault down to a single replaceable module or fiber, using rapid measurement and correlation of relevant measured and pre-calculated expected performance data. In case of hard faults, to avoid superfluous alarm reports at connection termination points, the optical channel fault detector provides fault indications to downstream nodes using Forward Defect Indications (FDI) over the optical supervisory channel (OSC).
    Type: Application
    Filed: December 20, 2002
    Publication date: June 24, 2004
    Inventors: Kerry Johnson, Peter David Roorda, Kim Letkeman, Paul Jean, Jeffrey Kenneth Emery
  • Publication number: 20030228146
    Abstract: A network operating system NOS for an agile optical network with a plurality of mesh interconnected switching nodes, manages the network using an object-oriented network information model. The model is common to all applications requiring the data stored in the network managed information base. The core model can be expanded for serving specific application areas. The NOS is organized in layers, at the optical module level, connection level and network level. A distributed topology server DTS organizes the physical, logical and topological data defining all network entities as managed objects MO and topology objects TO for constructing a complete network view. The network information model associates a network element NE information model, specified by managed objects MO and a topological information model, specified by topology objects TO.
    Type: Application
    Filed: September 16, 2002
    Publication date: December 11, 2003
    Inventors: Guy Claude Fortin, Markus Messenschmidt, Jeffrey Kenneth Emery, Hock Gin Lim, Ralph Stemmer
  • Publication number: 20020191241
    Abstract: The network operating system includes an embedded platform for controlling operation of an agile optical network at the physical layer level. At the module embedded level, each module (card-pack) is provided with an embedded controller EC that monitors and control operation of the optical modules. At the next level, each shelf is provided with a shelf processor SP that monitors and control operation of the ECs over a backplane network. All optical modules are connected over an optical trace channel to send/receive trace messages that can then be used to determine network connectivity. At the next, link management level, a network services controller NSC controls the SPs in a negotiated span of control, over a link network. The control is address-based; each NSC receives ranges of addresses for the entities in its control, and distributes these addresses to the SPs, which in turn distribute addresses to the ECs in their control.
    Type: Application
    Filed: June 6, 2002
    Publication date: December 19, 2002
    Inventors: Jeffrey Kenneth Emery, Guy Claude Fortin, Markus Messerschmidt, Paul Edward Beer, Robert George Alexander Craig, Hock Gin Lim, Youxun Duan
  • Publication number: 20020186432
    Abstract: The architecture for a photonic transport network provides for separation of passthru channels form the drop channels at the input of a switching node. A wavelength switching sub-system then switches the passthru channels, without OEO conversion. The drop channels are directed to broadband receiver of choice using a broadcast and select drop tree. The add channels are inserted at the output side of the node, using tunable transponders. In addition, a passthru channel may be OEO converted if signal conditioning and/or wavelength conversion are necessary. The transponders, regenerators and transceivers are not wavelength specific, allowing flexible and scaleable network configurations. This structure provides for fast provisioning of new services and ‘class of service’ network recovery in case of faults.
    Type: Application
    Filed: June 7, 2001
    Publication date: December 12, 2002
    Inventors: Peter David Roorda, Alan Glen Solheim, Gregory Matthew Penz, Hock Gin Lim, Jeffrey Kenneth Emery, Azmina Somani, Mark Stephen Wight, Gregory Dean May, David John Nicholson, James Frodsham