Patents by Inventor Jeffrey Kerchner

Jeffrey Kerchner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140069988
    Abstract: The present disclosure generally relates to methods of using active braze techniques in high temperature rechargeable batteries. In some specific embodiments, the present disclosure relates to a method of sealing a portion of an insulated alpha alumina or spinel collar and a metal ring of a sodium metal halide battery.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 13, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sundeep KUMAR, Raghavendra ADHARAPURAPU, Mamatha NAGESH, Kalaga Murali KRISHNA, Jeffrey KERCHNER, Laurent CRETEGNY, Mohamed RAHMANE
  • Publication number: 20120107224
    Abstract: Methods to at least partially reduce a niobium oxide are described wherein the process includes mixing the niobium oxide and niobium powder to form a powder mixture that is then heat treated to form heat treated particles which then undergo reacting in an atmosphere which permits the transfer of oxygen atoms from the niobium oxide to the niobium powder, and at a temperature and for a time sufficient to form an oxygen reduced niobium oxide. Oxygen reduced niobium oxides having high porosity are also described as well as capacitors containing anodes made from the oxygen reduced niobium oxides.
    Type: Application
    Filed: December 27, 2011
    Publication date: May 3, 2012
    Applicant: CABOT CORPORATION
    Inventors: David M. Reed, Sridhar Venigalla, Ricky W. Kitchell, Stephen J. Krause, Heather L. Enman, Dorran L. Schultz, Jeffrey A. Kerchner
  • Patent number: 8110172
    Abstract: Methods to at least partially reduce a niobium oxide are described wherein the process includes mixing the niobium oxide and niobium powder to form a powder mixture that is then heat treated to form heat treated particles which then undergo reacting in an atmosphere which permits the transfer of oxygen atoms from the niobium oxide to the niobium powder, and at a temperature and for a time sufficient to form an oxygen reduced niobium oxide. Oxygen reduced niobium oxides having high porosity are also described as well as capacitors containing anodes made from the oxygen reduced niobium oxides.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: February 7, 2012
    Assignee: Cabot Corporation
    Inventors: David M. Reed, Sridhar Venigalla, Ricky W. Kitchell, Stephen J. Krause, Heather L. Enman, Dorran L. Schultz, Jeffrey A. Kerchner
  • Patent number: 7655214
    Abstract: Valve metal suboxides having a primary suboxide phase and optionally a secondary suboxide phase, a valve metal phase, and/or at least one tertiary suboxide phase can be present in varying amounts. Also disclosed is anodes and capacitors containing the valve metal suboxides of the present invention. Also, a method to prepare a valve metal suboxide is further described which includes granulating one or more of the starting materials individually or together and/or granulating the final product.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: February 2, 2010
    Assignee: Cabot Corporation
    Inventors: David M. Reed, Sridhar Venigalla, Jeffrey A. Kerchner
  • Publication number: 20090244813
    Abstract: Methods to at least partially reduce a niobium oxide are described wherein the process includes mixing the niobium oxide and niobium powder to form a powder mixture that is then heat treated to form heat treated particles which then undergo reacting in an atmosphere which permits the transfer of oxygen atoms from the niobium oxide to the niobium powder, and at a temperature and for a time sufficient to form an oxygen reduced niobium oxide. Oxygen reduced niobium oxides having high porosity are also described as well as capacitors containing anodes made from the oxygen reduced niobium oxides.
    Type: Application
    Filed: April 7, 2009
    Publication date: October 1, 2009
    Applicant: CABOT CORPORATION
    Inventors: David M. Reed, Sridhar Venigalla, Ricky W. Kitchell, Stephen J. Krause, Heather L. Enman, Dorran L. Schultz, Jeffrey A. Kerchner
  • Patent number: 7515397
    Abstract: Methods to at least partially reduce a niobium oxide are described wherein the process includes mixing the niobium oxide and niobium powder to form a powder mixture that is then heat treated to form heat treated particles which then undergo reacting in an atmosphere which permits the transfer of oxygen atoms from the niobium oxide to the niobium powder, and at a temperature and for a time sufficient to form an oxygen reduced niobium oxide. Oxygen reduced niobium oxides having high porosity are also described as well as capacitors containing anodes made from the oxygen reduced niobium oxides.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: April 7, 2009
    Assignee: Cabot Corporation
    Inventors: David M. Reed, Sridhar Venigalla, Ricky W. Kitchell, Stephen J. Krause, Heather L. Enman, Dorran L. Schultz, Jeffrey A. Kerchner
  • Publication number: 20050025699
    Abstract: Methods to at least partially reduce a niobium oxide are described wherein the process includes mixing the niobium oxide and niobium powder to form a powder mixture that is then heat treated to form heat treated particles which then undergo reacting in an atmosphere which permits the transfer of oxygen atoms from the niobium oxide to the niobium powder, and at a temperature and for a time sufficient to form an oxygen reduced niobium oxide. Oxygen reduced niobium oxides having high porosity are also described as well as capacitors containing anodes made from the oxygen reduced niobium oxides.
    Type: Application
    Filed: May 19, 2004
    Publication date: February 3, 2005
    Inventors: David Reed, Sridhar Venigalla, Ricky Kitchell, Stephen Krause, Heather Enman, Dorran Schultz, Jeffrey Kerchner
  • Publication number: 20050008564
    Abstract: Valve metal suboxides having a primary suboxide phase and optionally a secondary suboxide phase, a valve metal phase, and/or at least one tertiary suboxide phase can be present in varying amounts. Also disclosed is anodes and capacitors containing the valve metal suboxides of the present invention. Also, a method to prepare a valve metal suboxide is further described which includes granulating one or more of the starting materials individually or together and/or granulating the final product.
    Type: Application
    Filed: February 25, 2004
    Publication date: January 13, 2005
    Inventors: David Reed, Sridhar Venigalla, Jeffrey Kerchner
  • Publication number: 20040248724
    Abstract: The present invention is directed to a silicate-based sintering aid and a method for producing the sintering aid. The sintering aid, or frit, may be added to dielectric compositions, including barium titanate-based compositions, to lower the sintering temperature. The sintering aid may be a single or multi-component silicate produced via a precipitation reaction by mixing solutions including silicon species and alkaline earth metal species. The sintering aid can be produced as nanometer-sized particles, or as coatings on the surfaces of pre-formed dielectric particles. Dielectric compositions that include the sintering aid may be used to form dielectric layers in MLCCs and, in particular, ultra-thin dielectric layers.
    Type: Application
    Filed: December 4, 2003
    Publication date: December 9, 2004
    Inventors: Sridhar Venigalla, David V. Miller, Jeffrey A. Kerchner, Kathleen A. Thrush
  • Publication number: 20040121153
    Abstract: Barium titanate-based compositions having a high tetragonality and methods of forming the same are provided, as well as devices formed from the compositions. The barium titanate-based compositions advantageously have a high tetragonality and small particle sizes. For example, in some embodiments, the barium titanate-based compositions have a tetragonality of greater than about 2.0 and an average particle size of less than about 0.3 micron. Some methods involve achieving high tetragonality by limiting the concentration of certain metals (other than barium or titanium) in the compositions and/or heat treating the compositions at relatively high temperatures. In some methods, the A/B ratio of the composition may be adjusted prior to heat treatment to ensure that a small particle size is maintained during heat treatment.
    Type: Application
    Filed: December 20, 2002
    Publication date: June 24, 2004
    Inventors: Sridhar Venigalla, Donald J. Clancy, Jeffrey A. Kerchner, Dorran L. Schultz
  • Patent number: 6733740
    Abstract: The invention provides a method for producing barium titanate-based particulate compositions. The method includes a heat treatment step, separate from a sintering step, that involves treating a barium titanate-based particulate composition at a temperature between about 700° C. and about 1150° C. to increase average particle size. The increased average particle size can improve the electrical properties (i.e., dielectric constant and dissipation factor) of the heat-treated composition as compared to the composition prior to heat treating. The heat-treated composition may be further processed, for example, by producing a dispersion which may be cast and sintered to form a dielectric layer in electronic components including MLCCs.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: May 11, 2004
    Assignee: Cabot Corporation
    Inventors: Stephen A. Costantino, Sridhar Venigalla, Jeffrey A. Kerchner
  • Publication number: 20040052721
    Abstract: The invention provides dielectric (e.g., barium titanate-based) particles having passivated surfaces. The surfaces may be passivated, for example, using methods that limit the dissolution of divalent metals (e.g., barium) from the particle surfaces in subsequent processing steps. In some methods, the surfaces are passivated by washing the particles to form a divalent metal-depleted surface region. In other methods, the particles may be coated with a divalent metal insoluble compound or a divalent metal free compound. Advantageously, the surface passivated particles may be uniformly dispersed to form dispersions that are stable for long periods of time and may be further processed to form articles having particles uniformly dispersed therein. The particles are particularly suitable in the formation of polymer/dielectric composites that may be used in embedded capacitor applications.
    Type: Application
    Filed: September 13, 2002
    Publication date: March 18, 2004
    Inventors: Jeffrey A. Kerchner, Sridhar Venigalla
  • Publication number: 20030215606
    Abstract: Methods of forming dispersible dielectric particles, as well as articles and compositions that include the dispersible dielectric particles, are provided. The methods involve forming an aqueous mixture of dielectric (e.g., barium titanate-based) particles and replacing at least a portion of water in the mixture with a non-aqueous solvent (e.g., ethanol). According to one set of methods, the particles are then dried. The limited, or lack, of water present in the mixture during drying reduces capillary forces that otherwise may draw the particles together to cause formation of strong agglomerates. Thus, particle agglomeration during drying may be reduced which increases particle dispersibility. According to another set of methods of the invention, the particles are not dried after non-aqueous solvent replacement, thus, avoiding formation of agglomerates during drying and increasing dispersibility.
    Type: Application
    Filed: May 17, 2002
    Publication date: November 20, 2003
    Inventors: Donald J. Clancy, Sridhar Venigalla, Jeffrey A. Kerchner
  • Publication number: 20030059366
    Abstract: Dispersible barium titanate-based particles and methods of forming the same are provided. One method involves subjecting the barium titanate-based particles to a heating step which removes hydroxyl groups from particle surfaces. Another method involves attaching a coupling agent to surfaces of the barium titanate-based particles. Both methods reduce the tendency of particles to agglomerate and/or aggregate when subsequently dispersed in a fluid. Thus, the methods enable production of dispersions that have a relatively uniform distribution of particles throughout. Such dispersions may be further processed as desired to form, for example, dielectric layers, polymer/dielectric composites or other structures. The structure may also include a uniform distribution of barium titanate-based particles which can improve properties amongst other advantages.
    Type: Application
    Filed: September 16, 2002
    Publication date: March 27, 2003
    Applicant: Cabot Corporation
    Inventors: Sridhar Venigalla, Jeffrey A. Kerchner
  • Publication number: 20020156436
    Abstract: The present invention is directed to treatment assemblies and, more specifically, to a treatment assembly having two pockets, one containing a fluid, such as a treatment, and an absorbent material, and the other containing an absorbent material. In one embodiment, the present invention is directed to a treatment assembly, including a first layer and a second layer joined to the first layer to define a first pocket and a second pocket substantially sealed from one another. The assembly further includes a first absorbent material and a fluid in the first pocket and a second absorbent material in the second pocket. The assembly may be used in a method of treatment by removing the first absorbent material from the first pocket and applying the fluid to a treatment area with the first absorbent material. The method may further include removing the second absorbent material from the second pocket and drying the treatment area with the second absorbent material.
    Type: Application
    Filed: April 18, 2001
    Publication date: October 24, 2002
    Inventor: Jeffrey Kerchner
  • Publication number: 20020150777
    Abstract: The present invention is directed to electrode additives, electrode compositions including the additives, capacitor structures formed using the electrode compositions, and methods of forming the electrode additives, the electrode compositions and the capacitor structures. For example, the electrode composition may be used to form electrode layers in electronic devices, such as multi-layer ceramic capacitors (MLCCs). The electrode composition is particularly well-suited for use with MLCCs that have base metal (e.g., nickel) electrodes.
    Type: Application
    Filed: April 11, 2001
    Publication date: October 17, 2002
    Inventors: Jeffrey A. Kerchner, Sridhar Venigalla
  • Publication number: 20020040085
    Abstract: A polymer matrix composite. The composite is made from a mixture of barium titanate-based particles dispersed in a polymeric resin. The mixture includes more than one barium titanate-based component, with each component having a different composition. The different barium titanate-based components are present in the mixture in specific proportions to provide the mixture with a relatively high, temperature-stable dielectric constant. Preferably, the mixture and resulting composite meets the temperature stability requirements to satisfy X7R capacitor specifications. The polymer matrix composite may be used in a number of applications, such as printed circuit boards which include embedded capacitors.
    Type: Application
    Filed: June 28, 2001
    Publication date: April 4, 2002
    Inventors: Sridhar Venigalla, David V. Miller, Jeffrey A. Kerchner
  • Patent number: 6129903
    Abstract: A hydrothermal process for making barium titanate powders. The process utilizes a thawed hydrated titanium oxide gel as a titanium source for the hydrothermal reaction. The process includes mixing the thawed hydrated titanium oxide gel and a barium source in a reaction chamber to form a hydrothermal reaction mixture. The temperature of the hydrothermal reaction mixture in the reaction chamber is increased to a reaction temperature to form a barium titanate particle suspension. The particle suspension is then cooled to room temperature. The resulting barium titanate particles, preferably, have a submicron particle size.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: October 10, 2000
    Assignee: Cabot Corportion
    Inventor: Jeffrey A. Kerchner