Patents by Inventor Jeffrey L. Swoyer

Jeffrey L. Swoyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110244330
    Abstract: An electrode for an electrochemical cell including a polymer substrate, a conductive material in contact with the polymer substrate, a conductive ink in contact with the conductive material, and an active electrode material in contact with the conductive ink. The conductive ink is configured to enhance the adhesion between the conductive material and the active electrode material.
    Type: Application
    Filed: April 13, 2011
    Publication date: October 6, 2011
    Inventors: Jeffrey L. Swoyer, Thomas J. Dougherty
  • Publication number: 20080241043
    Abstract: The invention is directed to synthesizing a phosphate-based electrode active material. The method includes the step of reacting two or more starting materials collectively containing at least a PO33? anion, an alkali metal and a metal which is redox active in the final reaction product, at a temperature and for a time sufficient to form the phosphate-based electrode active material.
    Type: Application
    Filed: June 9, 2008
    Publication date: October 2, 2008
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer
  • Patent number: 6964827
    Abstract: The present invention relates to novel electrode active materials represented by the general formula AaMb(XY4)cZd, wherein: (a) A is one or more alkali metals, and 0<a?8; (b) M is at least one metal capable of undergoing oxidation to a higher valence state, and 1?b?3; (c) XY4 is selected from the group consisting of X?O4?xY?x, X?O4?yY?2y, X?S4, and a mixture thereof, where X? is P, As, Sb, Si, Ge, S, and mixtures thereof; X? is P, As, Sb, Si, Ge, and mixtures thereof, Y? is halogen, 0?x<3, 0<y<4, and 0<c?3; and (d) Z is OH, a halogen, mixtures thereof, and 0<d?6.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: November 15, 2005
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer
  • Patent number: 6908710
    Abstract: The invention provides lithiated molybdenum oxides useful as cathode (positive electrode) active materials in rechargeable batteries, especially in lithium ion rechargeable batteries. In one aspect, the invention provides lithiated molybdenum oxides, some of which can be represented by nominal formulas LixMoO2 where x ranges from 0.1 to 2, and Li4Mo3O8. The crystal structure of the lithiated molybdenum oxides of the invention is characterized as being in a hexagonal space group with unit cell dimensions in a determined range. In a preferred embodiment, the lithiated molybdenum oxides of the invention can be formulated with known materials to provide electrodes for electrochemical cells. The invention also provides rechargeable batteries made by combining one or more such electrochemical cells.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: June 21, 2005
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer
  • Patent number: 6872492
    Abstract: Sodium ion batteries are based on sodium based active materials selected among compounds of the general formula: AaMb(XY4)cZd, wherein A comprises sodium, M comprises one or more metals, comprising at least one metal which is capable of undergoing oxidation to a higher valence state, Z is OH or halogen, and XY4 represents phosphate or a similar group. The anode of the battery includes a carbon material that is capable of inserting sodium ions. The carbon anode cycles reversibly at a specific capacity greater than 100 mAh/g.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: March 29, 2005
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer
  • Patent number: 6869547
    Abstract: Stabilized lithiated manganese oxide (LMO) is prepared by reacting cubic spinel lithium manganese oxide particles and particles of an alkali metal compound in air for a time and at a temperature sufficient to decompose at least a portion of the alkali metal compound, providing a treated lithium manganese oxide. The reaction product is characterized as particles having a core or bulk structure of cubic spinel lithium manganese oxide and a surface region which is enriched in Mn+4 relative to the bulk. X-ray diffraction data and x-ray photoelectron spectroscopy data are consistent with the structure of the stabilized LMO being a central bulk of cubic spinel lithium manganese oxide with a surface layer or region comprising A2MnO3, where A is an alkali metal. Electrochemical cells containing the stabilized LMO of the invention have improved charging and discharging characteristics and maintain integrity over a prolonged life cycle.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: March 22, 2005
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saldi, Jeffrey L. Swoyer
  • Patent number: 6815122
    Abstract: Electrode active materials comprising lithium or other alkali metals, a transition metal, and a phosphate or similar moiety, of the formula: Aa+xMbP1−xSixO4 wherein (a) A is selected from the group consisting of Li, Na, K, and mixtures thereof, and 0<a<1.0 and 0≦x≦1; (b) M comprises one or more metals, comprising at least one metal which is capable of undergoing oxidation to a higher valence state, where 0<b≦2; and wherein M, a, b, and x are selected so as to maintain electroneutrality of the compound. In a preferred embodiment, M comprises at least one transition metal selected from Groups 4 to 11 of the Periodic Table. In another preferred embodiment, M comprises M′cM″d, where M′ is at least one transition metal from Groups 4 to 11 of the Periodic Table; and M″ is at least one element from Groups 2, 3, 12, 13, or 14 of the Periodic Table, and c+d=b. Preferably, 0.1≦a≦0.8.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: November 9, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer
  • Publication number: 20040214084
    Abstract: Active materials of the invention contain at least one alkali metal and at least one other metal capable of being oxidized to a higher oxidation state. Preferred other metals are accordingly selected from the group consisting of transition metals (defined as Groups 4-11 of the periodic table), as well as certain other non-transition metals such as tin, bismuth, and lead. The active materials may be synthesized in single step reactions or in multi-step reactions. In at least one of the steps of the synthesis reaction, reducing carbon is used as a starting material. In one aspect, the reducing carbon is provided by elemental carbon, preferably in particulate form such as graphites, amorphous carbon, carbon blacks and the like. In another aspect, reducing carbon may also be provided by an organic precursor material, or by a mixture of elemental carbon and organic precursor material.
    Type: Application
    Filed: May 17, 2002
    Publication date: October 28, 2004
    Applicant: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer, Ming Dong
  • Publication number: 20040202937
    Abstract: The invention provides lithiated molybdenum oxides useful as cathode positive electrode) active materials in rechargeable batteries, especially in lithium ion rechargeable batteries. In one aspect, the invention provides lithiated molybdenum oxides, some of which can be represented by nominal formulas LixMoO2 where x ranges from 0.1 to 2, and Li4Mo3O8. The crystal structure of the lithiated molybdenum oxides of the invention is characterized as being in a hexagonal space group with unit cell dimensions in a determined range. In a preferred embodiment, the lithiated molybdenum oxides of the invention can be formulated with known materials to provide electrodes for electrochemical cells. The invention also provides rechargeable batteries made by combining one or more such electrochemical cells.
    Type: Application
    Filed: October 9, 2001
    Publication date: October 14, 2004
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer
  • Publication number: 20040185344
    Abstract: A method for carrying out solid state reactions under reducing conditions is provided. Solid state reactants include at least one inorganic metal compound and a source of reducing carbon. The reaction may be carried out in a reducing atmosphere in the presence of reducing carbon. Reducing carbon may be supplied by elemental carbon, by an organic material, or by mixtures. The organic material is one that can form decomposition products containing carbon in a form capable of acting as a reductant. The reaction proceeds without significant covalent incorporation of organic material into the reaction product. In a preferred embodiment, the solid state reactants also include an alkali metal compound. The products of the method find use in lithium ion batteries as cathode active materials. Preferred active materials include lithium-transition metal phosphates and lithium-transition metal oxides.
    Type: Application
    Filed: January 29, 2004
    Publication date: September 23, 2004
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer, Ming Dong
  • Patent number: 6777132
    Abstract: The present invention relates to novel electrode active materials represented by the general formula AaMb(XY4)cZd, wherein: (a) A is one or more alkali metals, and 0<a≦8; (b) M is at least one metal capable of undergoing oxidation to a higher valence state, and 1≦b≦3; (c) XY4 is selected from the group consisting of X′O4−xY′x, X′O4−yY′2y, X″S4, and a mixture thereof, where X′ is P, As, Sb, Si, Ge, S, and mixtures thereof; X″ is P, As, Sb, Si, Ge, and mixtures thereof, Y′ is halogen, 0≦x<3, 0<y<4, and 0<c≦3; and (d) Z is OH, a halogen, or mixtures thereof, and 0<d≦6.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: August 17, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer
  • Patent number: 6730281
    Abstract: A method for carrying out solid state reactions under reducing conditions is provided. Solid state reactants include at least one inorganic metal compound and a source of reducing carbon. The reaction may be carried out in a reducing atmosphere in the presence of reducing carbon. Reducing carbon may be supplied by elemental carbon, by an organic material, or by mixtures. The organic material is one that can form decomposition products containing carbon in a form capable of acting as a reductant. The reaction proceeds without significant covalent incorporation of organic material into the reaction product. In a preferred embodiment, the solid state reactants also include an alkali metal compound. The products of the method find use in lithium ion batteries as cathode active materials. Preferred active materials include lithium-transition metal phosphates and lithium-transition metal oxides.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: May 4, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer, Ming Dong
  • Patent number: 6723470
    Abstract: The invention provides novel lithium-mixed metal materials which, upon electrochemical interaction, release lithium ions, and are capable of reversibly cycling lithium ions. The invention provides a rechargeable lithium battery which comprises an electrode formed from the novel lithium-mixed metal materials. Methods for making the novel lithium-mixed metal materials and methods for using such lithium-mixed metal materials in electrochemical cells are also provided. The lithium-mixed metal materials comprise lithium and at least one other metal besides lithium. Preferred materials are lithium-mixed metal phosphates which contain lithium and two other metals besides lithium.
    Type: Grant
    Filed: July 18, 2001
    Date of Patent: April 20, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer
  • Patent number: 6720112
    Abstract: An electrochemical active material contains a lithiated zirconium, titanium, or mixed titanium/zirconium oxide. The oxide can be represented by the formula LiM′M″XO4, where M′ is a transition metal, M″ is an optional three valent non-transition metal, and X is zirconium, titanium, or a combination of the two. Preferably, M′ is nickel, cobalt, iron, manganese, vanadium, copper, chromium, molybdenum, niobium, or combinations thereof. The active material provides a useful composite electrode when combined with a polymeric binder and electrically conductive material. The active material can be made into a cathode for use in a secondary electrochemical cell. Rechargeable batteries may be made by connecting a number of such electrochemical cells.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: April 13, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer
  • Patent number: 6706445
    Abstract: An electrochemical active material contains a lithiated zirconium, titanium, or mixed titanium/zirconium oxide. The oxide can be represented by the formula LiM′M″XO4, where M′ is a transition metal, M″ is an optional three valent non-transition metal, and X is zirconium, titanium, or a combination of the two. Preferably, M′ is nickel, cobalt, iron, manganese, vanadium, copper, chromium, molybdenum, niobium, or combinations thereof. The active material provides a useful composite electrode when combined with a polymeric binder and electrically conductive material. The active material can be made into a cathode for use in a secondary electrochemical cell. Rechargeable batteries may be made by connecting a number of such electrochemical cells.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: March 16, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer
  • Publication number: 20030215715
    Abstract: A method for carrying out solid state reactions under reducing conditions is provided. Solid state reactants include at least one inorganic metal compound and a source of reducing carbon. The reaction may be carried out in a reducing atmosphere in the presence of reducing carbon. Reducing carbon may be supplied by elemental carbon, by an organic material, or by mixtures. The organic material is one that can form decomposition products containing carbon in a form capable of acting as a reductant. The reaction proceeds without significant covalent incorporation of organic material into the reaction product. In a preferred embodiment, the solid state reactants also include an alkali metal compound. The products of the method find use in lithium ion batteries as cathode active materials. Preferred active materials include lithium-transition metal phosphates and lithium-transition metal oxides.
    Type: Application
    Filed: May 17, 2002
    Publication date: November 20, 2003
    Applicant: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer, Ming Dong
  • Publication number: 20030170542
    Abstract: Electrode active materials comprising lithium or other alkali metals, a transition metal, and a phosphate or similar moiety, of the formula:
    Type: Application
    Filed: March 6, 2002
    Publication date: September 11, 2003
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer
  • Publication number: 20030073003
    Abstract: The invention provides lithiated molybdenum oxides useful as cathode (positive electrode) active materials in rechargeable batteries, especially in lithium ion rechargeable batteries. In one aspect, the invention provides lithiated molybdenum oxides, some of which can be represented by nominal formulas LixMoO2 where x ranges from 0.1 to 2, and Li4Mo3O8. The crystal structure of the lithiated molybdenum oxides of the invention is characterized as being in a hexagonal space group with unit cell dimensions in a determined range. In a preferred embodiment, the lithiated molybdenum oxides of the invention can be formulated with known materials to provide electrodes for electrochemical cells. The invention also provides rechargeable batteries made by combining one or more such electrochemical cells.
    Type: Application
    Filed: October 9, 2001
    Publication date: April 17, 2003
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer
  • Publication number: 20030073001
    Abstract: An electrochemical active material contains a lithiated zirconium, titanium, or mixed titanium/zirconium oxide. The oxide can be represented by the formula LiM′M″XO4, where M′ is a transition metal, M″ is an optional three valent non-transition metal, and X is zirconium, titanium, or a combination of the two. Preferably, M′ is nickel, cobalt, iron, manganese, vanadium, copper, chromium, molybdenum, niobium, or combinations thereof. The active material provides a useful composite electrode when combined with a polymeric binder and electrically conductive material. The active material can be made into a cathode for use in a secondary electrochemical cell. Rechargeable batteries may be made by connecting a number of such electrochemical cells.
    Type: Application
    Filed: October 2, 2001
    Publication date: April 17, 2003
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer
  • Publication number: 20030064288
    Abstract: An electrochemical active material contains a lithiated zirconium, titanium, or mixed titanium/zirconium oxide. The oxide can be represented by the formula LiM′M″XO4, where M′ is a transition metal, M″ is an optional three valent non-transition metal, and X is zirconium, titanium, or a combination of the two. Preferably, M′ is nickel, cobalt, iron, manganese, vanadium, copper, chromium, molybdenum, niobium, or combinations thereof. The active material provides a useful composite electrode when combined with a polymeric binder and electrically conductive material. The active material can be made into a cathode for use in a secondary electrochemical cell. Rechargeable batteries may be made by connecting a number of such electrochemical cells.
    Type: Application
    Filed: October 2, 2001
    Publication date: April 3, 2003
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer