Patents by Inventor Jeffrey M. Brake

Jeffrey M. Brake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7990488
    Abstract: A method of forming a liquid crystal device, includes: contacting an aqueous solution comprising a surfactant and a receptor molecule with a top surface of a liquid crystal. The liquid crystal is in a holding compartment of a substrate, and the receptor molecule is adsorbed on the top surface of the liquid crystal forming an interface between the liquid crystal and the aqueous solution. The receptor molecule is different than the surfactant. A method of detecting a compound in a flowing stream includes passing an aqueous solution over a top surface of a liquid crystal in a holding compartment of a substrate. The method also includes determining whether a change in the orientation of the liquid crystal occurs as the aqueous solution is passed over the top surface of the liquid crystal. A change in the orientation of the liquid crystal indicates the presence of the compound in the flowing stream.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: August 2, 2011
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Nicholas L. Abbott, Jeffrey M. Brake
  • Publication number: 20100233729
    Abstract: A method of forming a liquid crystal device, includes: contacting an aqueous solution comprising a surfactant and a receptor molecule with a top surface of a liquid crystal. The liquid crystal is in a holding compartment of a substrate, and the receptor molecule is adsorbed on the top surface of the liquid crystal forming an interface between the liquid crystal and the aqueous solution. The receptor molecule is different than the surfactant. A method of detecting a compound in a flowing stream includes passing an aqueous solution over a top surface of a liquid crystal in a holding compartment of a substrate. The method also includes determining whether a change in the orientation of the liquid crystal occurs as the aqueous solution is passed over the top surface of the liquid crystal. A change in the orientation of the liquid crystal indicates the presence of the compound in the flowing stream.
    Type: Application
    Filed: May 24, 2010
    Publication date: September 16, 2010
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Nicholas L. Abbott, Jeffrey M. Brake
  • Patent number: 7724319
    Abstract: A method of forming a liquid crystal device, includes: contacting an aqueous solution comprising a surfactant and a receptor molecule with a top surface of a liquid crystal. The liquid crystal is in a holding compartment of a substrate, and the receptor molecule is adsorbed on the top surface of the liquid crystal forming an interface between the liquid crystal and the aqueous solution. The receptor molecule is different than the surfactant. A method of detecting a compound in a flowing stream includes passing an aqueous solution over a top surface of a liquid crystal in a holding compartment of a substrate. The method also includes determining whether a change in the orientation of the liquid crystal occurs as the aqueous solution is passed over the top surface of the liquid crystal. A change in the orientation of the liquid crystal indicates the presence of the compound in the flowing stream.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: May 25, 2010
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Nicholas L. Abbott, Jeffrey M. Brake
  • Publication number: 20090123670
    Abstract: A method of forming a liquid crystal device, includes: contacting an aqueous solution comprising a surfactant and a receptor molecule with a top surface of a liquid crystal. The liquid crystal is in a holding compartment of a substrate, and the receptor molecule is adsorbed on the top surface of the liquid crystal forming an interface between the liquid crystal and the aqueous solution. The receptor molecule is different than the surfactant. A method of detecting a compound in a flowing stream includes passing an aqueous solution over a top surface of a liquid crystal in a holding compartment of a substrate. The method also includes determining whether a change in the orientation of the liquid crystal occurs as the aqueous solution is passed over the top surface of the liquid crystal. A change in the orientation of the liquid crystal indicates the presence of the compound in the flowing stream.
    Type: Application
    Filed: November 26, 2008
    Publication date: May 14, 2009
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Nicholas L. Abbott, Jeffrey M. Brake
  • Patent number: 7459124
    Abstract: A method of forming a liquid crystal device, includes: contacting an aqueous solution comprising a surfactant and a receptor molecule with a top surface of a liquid crystal. The liquid crystal is in a holding compartment of a substrate, and the receptor molecule is adsorbed on the top surface of the liquid crystal forming an interface between the liquid crystal and the aqueous solution. The receptor molecule is different than the surfactant. A method of detecting a compound in a flowing stream includes passing an aqueous solution over a top surface of a liquid crystal in a holding compartment of a substrate. The method also includes determining whether a change in the orientation of the liquid crystal occurs as the aqueous solution is passed over the top surface of the liquid crystal. A change in the orientation of the liquid crystal indicates the presence of the compound in the flowing stream.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: December 2, 2008
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Nicholas L. Abbott, Jeffrey M. Brake
  • Publication number: 20080268546
    Abstract: A DNA hybridization surface includes a support having a self assembled monolayer on a metallized surface. The self assembled monolayer includes an alkanethiol and a strand of nucleic acids comprising a functional group that binds to the metallized surface. A method for detecting DNA hybridization in a sample includes (a) incubating a DNA hybridization surface with an aqueous sample that includes a fragment of DNA to produce an incubated DNA hybridization surface; (b) rinsing the incubated DNA hybridization surface to produce a rinsed incubated DNA hybridization surface; (c) contacting the rinsed incubated DNA hybridization surface with a liquid crystal; and (d) determining whether the liquid crystal is uniformly anchored on the rinsed incubated DNA hybridization surface.
    Type: Application
    Filed: February 15, 2008
    Publication date: October 30, 2008
    Inventors: Nicholas L. Abbott, Jeffrey M. Brake, Pritipal S. Bhinder
  • Patent number: 7125592
    Abstract: A method of forming a liquid crystal device, includes: contacting an aqueous solution comprising a surfactant and a receptor molecule with a top surface of a liquid crystal. The liquid crystal is in a holding compartment of a substrate, and the receptor molecule is adsorbed on the top surface of the liquid crystal forming an interface between the liquid crystal and the aqueous solution. The receptor molecule is different than the surfactant. A method of detecting a compound in a flowing stream includes passing an aqueous solution over a top surface of a liquid crystal in a holding compartment of a substrate. The method also includes determining whether a change in the orientation of the liquid crystal occurs as the aqueous solution is passed over the top surface of the liquid crystal. A change in the orientation of the liquid crystal indicates the presence of the compound in the flowing stream.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: October 24, 2006
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Nicholas Lawrence Abbott, Jeffrey M. Brake
  • Publication number: 20030194753
    Abstract: A method of forming a liquid crystal device, includes: contacting an aqueous solution comprising a surfactant and a receptor molecule with a top surface of a liquid crystal. The liquid crystal is in a holding compartment of a substrate, and the receptor molecule is adsorbed on the top surface of the liquid crystal forming an interface between the liquid crystal and the aqueous solution. The receptor molecule is different than the surfactant. A method of detecting a compound in a flowing stream includes passing an aqueous solution over a top surface of a liquid crystal in a holding compartment of a substrate. The method also includes determining whether a change in the orientation of the liquid crystal occurs as the aqueous solution is passed over the top surface of the liquid crystal. A change in the orientation of the liquid crystal indicates the presence of the compound in the flowing stream.
    Type: Application
    Filed: April 10, 2002
    Publication date: October 16, 2003
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Nicholas Lawrence Abbott, Jeffrey M. Brake
  • Publication number: 20030099993
    Abstract: A DNA hybridization surface includes a support having a self assembled monolayer on a metallized surface. The self assembled monolayer includes an alkanethiol and a strand of nucleic acids comprising a functional group that binds to the metallized surface. A method for detecting DNA hybridization in a sample includes (a) incubating a DNA hybridization surface with an aqueous sample that includes a fragment of DNA to produce an incubated DNA hybridization surface; (b) rinsing the incubated DNA hybridization surface to produce a rinsed incubated DNA hybridization surface; (c) contacting the rinsed incubated DNA hybridization surface with a liquid crystal; and (d) determining whether the liquid crystal is uniformly anchored on the rinsed incubated DNA hybridization surface.
    Type: Application
    Filed: October 1, 2002
    Publication date: May 29, 2003
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Nicholas L. Abbott, Jeffrey M. Brake, Pritipal S. Bhinder