Patents by Inventor Jeffrey M. Fish

Jeffrey M. Fish has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11883106
    Abstract: A method for determining a predicted lesion size formed in a tissue by receiving or calculating a measure of contact force between the electrode and the tissue, determining a tissue characterization, and calculating the predicted lesion size using both the measure of contact force and the tissue characterization. A system comprising an electronic control unit configured to receive or determine a measure of contact force between the electrode and the tissue, characterize the tissue based on both the measure of impedance and the measure of contact force, and cause the tissue characterization to be either (a) presented to a user, or (b) applied to calculate a metric and cause the metric to be presented to the user.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: January 30, 2024
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Jeffrey M. Fish, Lynn E. Clark
  • Publication number: 20230329772
    Abstract: The present disclosure provides electroporation systems, methods of controlling electroporation systems to limit electroporation arcs through intracardiac catheters, and catheters for electroporation systems. One method of controlling an electroporation system including a direct current (DC) energy source, a return electrode connected to the DC energy source, and a catheter connected to the DC energy source is disclosed. The catheter has a at least one catheter electrode. The method includes positioning the return electrode near a target location within a body and positioning the catheter electrode adjacent the target location within the body. A system impedance is determined with the return electrode positioned near the target location and the catheter electrode positioned within the body. The system impedance is adjusted to a target impedance to limit arcing from the catheter electrode.
    Type: Application
    Filed: June 15, 2023
    Publication date: October 19, 2023
    Inventors: Israel Byrd, Jeffrey M. Fish, Jeffrey A. Schweitzer, Daniel J. Potter, Gregory K. Olson, Frederik H. M. Wittkampf, Rene Van Es
  • Patent number: 11717337
    Abstract: The present disclosure provides electroporation systems, methods of controlling electroporation systems to limit electroporation arcs through intracardiac catheters, and catheters for electroporation systems. One method of controlling an electroporation system including a direct current (DC) energy source, a return electrode connected to the DC energy source, and a catheter connected to the DC energy source is disclosed. The catheter has a at least one catheter electrode. The method includes positioning the return electrode near a target location within a body and positioning the catheter electrode adjacent the target location within the body. A system impedance is determined with the return electrode positioned near the target location and the catheter electrode positioned within the body. The system impedance is adjusted to a target impedance to arcing from the catheter electrode.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: August 8, 2023
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Israel Byrd, Jeffrey M. Fish, Jeffrey A. Schweitzer, Daniel J. Potter, Gregory K. Olson, Frederik H. M. Wittkampf, Rene Van Es
  • Publication number: 20230052114
    Abstract: Systems and methods for electroporation are provided. An electroporation system includes a catheter including a plurality of electrodes, and a pulse generator coupled to the catheter, the pulse generator configured to generate a waveform to be delivered using at least one of the plurality of electrodes. The waveform includes a first pulse having a first polarity, a first pulse amplitude, and a first pulse width, and a second pulse having a second polarity, a second pulse amplitude, and a second pulse width, wherein the first and second pulses are separated by an interpulse delay, and wherein at least one of i) the first pulse amplitude is different than the second pulse amplitude and ii) the first pulse width is different than the second pulse width.
    Type: Application
    Filed: August 4, 2022
    Publication date: February 16, 2023
    Inventors: Timothy S. Marass, Troy Tegg, Jacob Daly, Derek Sutermeister, Lakshya Mittal, John Tranter, Jeffrey M. Fish
  • Publication number: 20190307500
    Abstract: The present disclosure provides electroporation systems, methods of controlling electroporation systems to limit electroporation arcs through intracardiac catheters, and catheters for electroporation systems. One method of controlling an electroporation system including a direct current (DC) energy source, a return electrode connected to the DC energy source, and a catheter connected to the DC energy source is disclosed. The catheter has a at least one catheter electrode. The method includes positioning the return electrode near a target location within a body and positioning the catheter electrode adjacent the target location within the body. A system impedance is determined with the return electrode positioned near the target location and the catheter electrode positioned within the body. The system impedance is adjusted to a target impedance to arcing from the catheter electrode.
    Type: Application
    Filed: November 29, 2017
    Publication date: October 10, 2019
    Inventors: Israel Byrd, Jeffrey M. Fish, Jeffrey A. Schweitzer, Daniel J. Potter, Gregory K. Olson, Frederik H. M. Wittkampf, Rene Van Es
  • Publication number: 20190175279
    Abstract: A system for displaying characteristics of target tissue during an ablation procedure is provided that includes an electronic control unit (ECU) configured to receive data regarding electrical properties of the target tissue for a time period. The ECU is also configured to determine a value responsive to the data and indicative of at least one of a predicted depth of a lesion in the target tissue, a predicted temperature of the target tissue, and a likelihood of steam pop of the target tissue for the time period. The system further includes a display device operatively connected to the ECU. The display device is configured to receive the value and display a visual representation indicative of at least one of a predicted depth of a lesion in the target tissue, a predicted temperature of the target tissue, and a likelihood of steam pop of the target tissue for the time period.
    Type: Application
    Filed: February 1, 2019
    Publication date: June 13, 2019
    Inventors: Jeffrey M. Fish, Jeremy D. Dando, Israel A. Byrd
  • Patent number: 10201388
    Abstract: A system for displaying characteristics of target tissue during an ablation procedure is provided that includes an electronic control unit (ECU) configured to receive data regarding electrical properties of the target tissue for a time period. The ECU is also configured to determine a value responsive to the data and indicative of at least one of a predicted depth of a lesion in the target tissue, a predicted temperature of the target tissue, and a likelihood of steam pop of the target tissue for the time period. The system further includes a display device operatively connected to the ECU. The display device is configured to receive the value and display a visual representation indicative of at least one of a predicted depth of a lesion in the target tissue, a predicted temperature of the target tissue, and a likelihood of steam pop of the target tissue for the time period.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: February 12, 2019
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Jeffrey M. Fish, Israel A. Byrd, Jeremy D. Dando
  • Patent number: 10194885
    Abstract: A system that automatically detects a myocardial barotrauma (i.e., tissue pop) event so that proper post-procedure care can be given includes an electronic control unit (ECU), a computer-readable memory coupled with the ECU, and detection logic stored in the memory configured to be executed by the ECU. The detection logic is configured to receive a signal generated by an electro-acoustic transducer related to acoustic activity within the patient, monitor the signal for a pre-determined indication of a barotrauma event, and output a notification when the pre-determined indication is detected. The transducer can be integrated with an extra-body patch that includes one or more electrodes for use with a medical device navigation system.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: February 5, 2019
    Assignee: ST. JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC.
    Inventors: Israel A. Byrd, Jeffrey M. Fish, Lynn E. Clark, Saurav Paul
  • Publication number: 20180092689
    Abstract: Aspects of the present disclosure are directed to, for example, a method for determining a temperature distribution across an ablation catheter tip. The method including contacting tissue with a distal tip of an ablation catheter, receiving temperature data from a plurality of thermocouples distributed about the distal tip of the ablation catheter, and based on the received temperature data, determine a temperature distribution across the distal tip of the ablation catheter. Also disclosed is a method of controlling the temperature of an ablation catheter tip while creating a desired lesion using various energy sources and energy delivery methodologies.
    Type: Application
    Filed: October 3, 2017
    Publication date: April 5, 2018
    Inventors: Troy T. Tegg, Brett A. Hillukka, Timothy G. Curran, Jeffrey M. Fish
  • Publication number: 20170319279
    Abstract: A method for determining a predicted lesion size formed in a tissue by receiving or calculating a measure of contact force between the electrode and the tissue, determining a tissue characterization, and calculating the predicted lesion size using both the measure of contact force and the tissue characterization. A system comprising an electronic control unit configured to receive or determine a measure of contact force between the electrode and the tissue, characterize the tissue based on both the measure of impedance and the measure of contact force, and cause the tissue characterization to be either (a) presented to a user, or (b) applied to calculate a metric and cause the metric to be presented to the user.
    Type: Application
    Filed: May 1, 2017
    Publication date: November 9, 2017
    Inventors: Jeffrey M. Fish, Lynn E. Clark
  • Patent number: 9610119
    Abstract: A method and system for assessing lesion formation in tissue is provided. The system includes an electronic control unit (ECU) configured to acquire magnitudes for a component of a complex impedance between an electrode and tissue, and the power applied to the tissue during lesion formation. The ECU is configured to calculate a value responsive to the complex impedance component and the power. The value is indicative of a predicted lesion depth, a likelihood the lesion has reached a predetermined depth, or a predicted tissue temperature. The method includes acquiring magnitudes for a component of a complex impedance between an electrode and tissue and the power applied during lesion formation. The method includes calculating a value responsive to the complex impedance component and the power, the value being indicative of a predicted lesion depth, a likelihood the lesion has reached a predetermined depth, and/or a predicted tissue temperature.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: April 4, 2017
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Jeffrey M. Fish, Israel A. Byrd, Lynn E. Clark, Jeremy D. Dando, Christopher J. Geurkink, Harry A. Puryear, Saurav Paul
  • Publication number: 20170065348
    Abstract: A system for displaying characteristics of target tissue during an ablation procedure is provided that includes an electronic control unit (ECU) configured to receive data regarding electrical properties of the target tissue for a time period. The ECU is also configured to determine a value responsive to the data and indicative of at least one of a predicted depth of a lesion in the target tissue, a predicted temperature of the target tissue, and a likelihood of steam pop of the target tissue for the time period. The system further includes a display device operatively connected to the ECU. The display device is configured to receive the value and display a visual representation indicative of at least one of a predicted depth of a lesion in the target tissue, a predicted temperature of the target tissue, and a likelihood of steam pop of the target tissue for the time period.
    Type: Application
    Filed: September 26, 2016
    Publication date: March 9, 2017
    Inventors: Jeffrey M. Fish, Israel A. Byrd, Jeremy D. Dando
  • Patent number: 9492226
    Abstract: A system for displaying characteristics of target tissue during an ablation procedure is provided that includes an electronic control unit (ECU) configured to receive data regarding electrical properties of the target tissue for a time period. The ECU is also configured to determine a value responsive to the data and indicative of at least one of a predicted depth of a lesion in the target tissue, a predicted temperature of the target tissue, and a likelihood of steam pop of the target tissue for the time period. The system further includes a display device operatively connected to the ECU. The display device is configured to receive the value and display a visual representation indicative of at least one of a predicted depth of a lesion in the target tissue, a predicted temperature of the target tissue, and a likelihood of steam pop of the target tissue for the time period.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: November 15, 2016
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Jeffrey M. Fish, Israel A. Byrd, Jeremy D. Dando
  • Patent number: 9095349
    Abstract: A method and system for determining a likelihood of barotrauma occurring in tissue during formation of a lesion therein is provided. The system includes an electronic control unit (ECU). The ECU is configured to acquire at least one value of at least one component of a complex impedance between an electrode and the tissue. The ECU is configured to calculate an index responsive to the at least one value of the at least one complex impedance component. The index is indicative of a likelihood of barotrauma occurring in the tissue. The method comprises acquiring at least one value of at least one component of a complex impedance between an electrode and the tissue. The method comprises calculating an index responsive to the at least one value of the at least one complex impedance component. The calculated index is indicative of a likelihood of barotrauma occurring in the tissue.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: August 4, 2015
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Jeffrey M. Fish, Israel A. Byrd, Lynn Gilmour, Jeremy D. Dando, Christopher J. Geurkink, Rohan Lathia, Harry A. Puryear, Valtino X. Afonso, Saurav Paul
  • Patent number: 8945110
    Abstract: An electrophysiology catheter includes an elongate catheter body having an elastically-deformable distal region predisposed to assume a spiral shape and a first plurality of electrodes disposed thereon. Each of the first plurality of electrodes includes an electrically active region limited to the inner surface of the spiral shape for use in non-contact electrophysiology studies. A second plurality of electrodes may also be disposed on the distal region interspersed (e.g., alternating) with the first plurality of electrodes, with each of the second plurality of electrodes having an electrically active region extending into the outer surface of the spiral shape for use in contact electrophysiology studies. The distal region may be deformed into a straight configuration for insertion into and navigation through the patient's vasculature, for example via use of a tubular introducer. As the distal region deploys beyond the distal end of the introducer, it resumes the spiral shape.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: February 3, 2015
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Jeffrey M. Fish, Sacha C. Hall, Theodore A. Johnson
  • Publication number: 20140358038
    Abstract: A system that automatically detects a myocardial barotrauma (i.e., tissue pop) event so that proper post-procedure care can be given includes an electronic control unit (ECU), a computer-readable memory coupled with the ECU, and detection logic stored in the memory configured to be executed by the ECU. The detection logic is configured to receive a signal generated by an electro-acoustic transducer related to acoustic activity within the patient, monitor the signal for a pre-determined indication of a barotrauma event, and output a notification when the pre-determined indication is detected. The transducer can be integrated with an extra-body patch that includes one or more electrodes for use with a medical device navigation system.
    Type: Application
    Filed: October 2, 2012
    Publication date: December 4, 2014
    Inventors: Israel A. Byrd, Jeffrey M. Fish, Lynn E. Clark, Saurav Paul
  • Patent number: D743209
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: November 17, 2015
    Assignee: Arrow Plastic Manufacturing Co.
    Inventors: David Maas, Robert Kleckauskas, John P. Coursey, Bruce Ronner, Rita Sifuentes, Valorie Boldrey Langille, Charles A. Brewer, Jeffrey M. Fish
  • Patent number: D747970
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: January 26, 2016
    Assignee: Arrow Plastic Manufacturing Co.
    Inventors: David Maas, Robert Kleckauskas, John P. Coursey, Bruce Ronner, Rita Sifuentes, Valorie Boldrey Langille, Charles A. Brewer, Jeffrey M. Fish
  • Patent number: D752392
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: March 29, 2016
    Assignee: Arrow Plastic Manufacturing Co.
    Inventors: David Maas, Robert Kleckauskas, John P. Coursey, Bruce Ronner, Rita Sifuentes, Valorie Boldrey Langille, Charles A. Brewer, Jeffrey M. Fish, Kyle Cauwels
  • Patent number: D787267
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: May 23, 2017
    Assignee: Arrow Home Products Company
    Inventors: David Maas, Robert Kleckauskas, John P. Coursey, Bruce Ronner, Rita Sifuentes, Valorie Boldrey Langille, Charles A. Brewer, Jeffrey M. Fish, Kyle Cauwels, Janis Faciszewski