Patents by Inventor Jeffrey M. Florczak

Jeffrey M. Florczak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10658096
    Abstract: A multilayer magnetic sheet is described which comprises a plurality of stacked magnetic component layers separated by first electrically insulating layers. Each of the plurality of magnetic component layers comprises a plurality of isolated magnetic sublayers having a magnetic layer thickness of less than one micron. The multilayer magnetic sheet has a magnetic fraction between about 5% and about 80%; a total magnetic thickness of greater than or equal to 5 microns; and a relative composite permeability of greater than about 20.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: May 19, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Xiaoming Kou, Michael S. Graff, Jeffrey M. Florczak, Steven L. Johnson, Rui Yang, Carlos A. Barrios, Steven D. Theiss, Kevin W. Gotrik
  • Publication number: 20190035523
    Abstract: A multilayer magnetic sheet is described which comprises a plurality of stacked magnetic component layers separated by first electrically insulating layers. Each of the plurality of magnetic component layers comprises a plurality of isolated magnetic sublayers having a magnetic layer thickness of less than one micron. The multilayer magnetic sheet has a magnetic fraction between about 5% and about 80%; a total magnetic thickness of greater than or equal to 5 microns; and a relative composite permeability of greater than about 20.
    Type: Application
    Filed: February 9, 2017
    Publication date: January 31, 2019
    Inventors: Xiaoming Kou, Michael S. Graff, Jeffrey M. Florczak, Steven L. Johnson, Rui Yang, Carlos A. Barrios, Steven D. Theiss, Kevin W. Gotrik
  • Patent number: 8530118
    Abstract: Methods of fabricating optical elements that are encapsulated in monolithic matrices. The present invention is based, at least in one aspect, upon the concept of using multiphoton, multi-step photocuring to fabricate encapsulated optical element(s) within a body of a photopolymerizable composition. Imagewise, multiphoton polymerization techniques are used to form the optical element. The body surrounding the optical element is also photohardened by blanket irradiation and/or thermal curing to help form an encapsulating structure. In addition, the composition also incorporates one or more other, non-diffusing binder components that may be thermosetting or thermoplastic. The end result is an encapsulated structure with good hardness, durability, dimensional stability, resilience, and toughness.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: September 10, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Robert J. DeVoe, Catherine A. Leatherdale, Jeffrey M. Florczak, Patrick R. Fleming, John E. Potts
  • Patent number: 8057980
    Abstract: Translucent, transparent, or semi-translucent microlens sheetings with composite images are disclosed, in which a composite image floats above or below the sheeting, or both. The composite image may be two-dimensional or three-dimensional. The sheeting may have at least one layer of material having a surface of microlenses that form one or more images at positions internal to the layer of material, at least one of the images being a partially complete image. Additional layers, such as retroreflective, translucent, transparent, or optical structure layers may also be incorporated into the sheeting.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: November 15, 2011
    Inventors: Douglas S. Dunn, Robert L. W. Smithson, Robert T. Krasa, Michael W. Dolezal, Jeffrey M. Florczak, Stephen P. Maki, Richard M. Osgood, III
  • Patent number: 8004767
    Abstract: A process for making a microlens array or a microlens array masterform comprises (a) providing a photoreactive composition, the photoreactive composition comprising (1) at least one reactive species that is capable of undergoing an acid- or radical-initiated chemical reaction, and (2) at least one multiphoton photoinitiator system; and (b) imagewise exposing at least a portion of the composition to light sufficient to cause simultaneous absorption of at least two photons, thereby inducing at least one acid- or radical-initiated chemical reaction where the composition is exposed to the light, the imagewise exposing being carried out in a pattern that is effective to define at least the surface of a plurality of microlenses, each of the microlenses having a principal axis and a focal length, and at least one of the microlenses being an aspherical microlens.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: August 23, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Robert J. DeVoe, Dora M. Paolucci, Craig R. Sykora, Todd A. Ballen, Douglas S. Dunn, Jeffrey M. Florczak, Catherine A. Leatherdale
  • Patent number: 7790353
    Abstract: A method for enhancing photoreactive absorption in a specified volume element of a photoreactive composition. In one embodiment, the method includes: providing a photoreactive composition: providing a source of light (preferably, a pulsed laser) sufficient for simultaneous absorption of at least two photons by the photoreactive composition, the light source having a beam capable of being divided: dividing the light beam into a plurality of equal path length exposure beams: and focusing the exposure beams in a substantially non-counter propagating manner at a single volume element of the photoreactive composition simultaneously to react at least a portion of the photoreactive composition.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: September 7, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Patrick R. Fleming, Robert J. DeVoe, Catherine A. Leatherdale, Todd A. Ballen, Jeffrey M. Florczak
  • Publication number: 20100027956
    Abstract: Methods of fabricating optical elements that are encapsulated in monolithic matrices. The present invention is based, at least in one aspect, upon the concept of using multiphoton, multi-step photocuring to fabricate encapsulated optical element(s) within a body of a photopolymerizable composition. Imagewise, multiphoton polymerization techniques are used to form the optical element. The body surrounding the optical element is also photohardened by blanket irradiation and/or thermal curing to help form an encapsulating structure. In addition, the composition also incorporates one or more other, non-diffusing binder components that may be thermosetting or thermoplastic. The end result is an encapsulated structure with good hardness, durability, dimensional stability, resilience, and toughness.
    Type: Application
    Filed: August 21, 2009
    Publication date: February 4, 2010
    Inventors: Robert J. DeVoe, Catherine A. Leatherdale, Jeffrey M. Florczak, Patrick R. Fleming, John E. Potts
  • Publication number: 20090284840
    Abstract: A process for making a microlens array or a microlens array masterform comprises (a) providing a photoreactive composition, the photoreactive composition comprising (1) at least one reactive species that is capable of undergoing an acid- or radical-initiated chemical reaction, and (2) at least one multiphoton photoinitiator system; and (b) imagewise exposing at least a portion of the composition to light sufficient to cause simultaneous absorption of at least two photons, thereby inducing at least one acid- or radical-initiated chemical reaction where the composition is exposed to the light, the imagewise exposing being carried out in a pattern that is effective to define at least the surface of a plurality of microlenses, each of the microlenses having a principal axis and a focal length, and at least one of the microlenses being an aspherical microlens.
    Type: Application
    Filed: July 27, 2009
    Publication date: November 19, 2009
    Inventors: Robert J. DeVoe, Dora M. Paolucci, Craig R. Sykora, Todd A. Ballen, Douglas S. Dunn, Jeffrey M. Florczak, Catherine A. Leatherdale
  • Patent number: 7601484
    Abstract: Methods of fabricating optical elements that are encapsulated in monolithic matrices. The present invention is based, at least in one aspect, upon the concept of using multiphoton, multi-step photocuring to fabricate encapsulated optical element(s) within a body of a photopolymerizable composition. Imagewise, multi-photon polymerization techniques are used to form the optical element. The body surrounding the optical element is also photohardened by blanket irradiation and/or thermal curing to help form an encapsulating structure. In addition, the composition also incorporates one or more other, non-diffusing binder components that may be thermosetting or thermoplastic. The end result is an encapsulated structure with good hardness, durability, dimensional stability, resilience, and toughness.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: October 13, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Robert J. DeVoe, Catherine A. Leatherdale, Jeffrey M. Florczak, Patrick R. Fleming, John E. Potts
  • Patent number: 7583444
    Abstract: A process for making a microlens array or a microlens array masterform comprises (a) providing a photoreactive composition, the photoreactive composition comprising (1) at least one reactive species that is capable of undergoing an acid- or radical-initiated chemical reaction, and (2) at least one multiphoton photoinitiator system; and (b) imagewise exposing at least a portion of the composition to light sufficient to cause simultaneous absorption of at least two photons, thereby inducing at least one acid- or radical-initiated chemical reaction where the composition is exposed to the light, the imagewise exposing being carried out in a pattern that is effective to define at least the surface of a plurality of microlenses, each of the microlenses having a principal axis and a focal length, and at least one of the microlenses being an aspherical microlens.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: September 1, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Robert J. DeVoe, Dora M. Paolucci, Craig R. Sykora, Todd A. Ballen, Douglas S. Dunn, Jeffrey M. Florczak, Catherine A. Leatherdale
  • Publication number: 20080118862
    Abstract: Translucent, transparent, or semi-translucent microlens sheetings with composite images are disclosed, in which a composite image floats above or below the sheeting, or both. The composite image may be two-dimensional or three-dimensional. The sheeting may have at least one layer of material having a surface of microlenses that form one or more images at positions internal to the layer of material, at least one of the images being a partially complete image. Additional layers, such as retroreflective, translucent, transparent, or optical structure layers may also be incorporated into the sheeting.
    Type: Application
    Filed: December 20, 2007
    Publication date: May 22, 2008
    Inventors: Douglas S. Dunn, Robert L.W. Smithson, Robert T. Krasa, Michael W. Dolezal, Jeffrey M. Florczak, Robert T. Krasa, Stephen P. Maki, Richard M. Osgood
  • Patent number: 7166409
    Abstract: A method of increasing the efficiency of a multiphoton absorption process and apparatus. The method includes: providing a photoreactive composition; providing a source of sufficient light for simultaneous absorption of at least two photons; exposing the photoreactive composition to at least one transit of light from the light source; and directing at least a portion of the first transit of the light back into the photoreactive composition using at least one optical element, wherein a plurality of photons not absorbed in at least one transit are used to expose the photoreactive composition in a subsequent transit.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: January 23, 2007
    Assignee: 3M Innovative Properties Company
    Inventors: Patrick R. Fleming, Robert J. DeVoe, Catherine A. Leatherdale, Todd A. Ballen, Jeffrey M. Florczak
  • Patent number: 7068434
    Abstract: Microlens sheetings with composite images are disclosed, in which the composite image floats above or below the sheeting, or both. The composite image may be two-dimensional or three-dimensional. Methods for providing such an imaged sheeting, including by the application of radiation to a radiation sensitive material layer adjacent the microlenses, are also disclosed.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: June 27, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Jeffrey M. Florczak, Robert T. Krasa, Stephen P. Maki, Richard M. Osgood, III
  • Patent number: 7014988
    Abstract: Methods of fabricating optical elements that are encapsulated in monolithic matrices. The present invention is based, at least in one aspect, upon the concept of using multiphoton, multi-step photocuring to fabricate encapsulated optical element(s) within a body of a photopolymerizable composition. Imagewise, multi-photon polymerization techniques are used to form the optical element. The body surrounding the optical element is also photohardened by blanket irradiation and/or thermal curing to help form an encapsulating structure. In addition, the composition also incorporates one or more other, non-diffusing binder components that may be thermosetting or thermoplastic. The end result is an encapsulated structure with good hardness, durability, dimensional stability, resilience, and toughness.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: March 21, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Robert J. DeVoe, Catherine A. Leatherdale, Patrick R. Fleming, John E. Potts, Jeffrey M. Florczak
  • Publication number: 20040223385
    Abstract: A method for enhancing photoreactive absorption in a specified volume element of a photoreactive composition. In one embodiment, the method includes: providing a photoreactive composition: providing a source of light (preferably, a pulsed laser) sufficient for simultaneous absorption of at least two photons by the photoreactive composition, the light source having a beam capable of being divided: dividing the light beam into a plurality of equal path length exposure beams: and focusing the exposure beams in a substantially non-counter propagating manner at a single volume element of the photoreactive composition simultaneously to react at least a portion of the photoreactive composition.
    Type: Application
    Filed: December 12, 2002
    Publication date: November 11, 2004
    Inventors: Patrick R. Fleming, Robert J. De Voe, Catherine A. Leatherdale, Todd A. Ballen, Jeffrey M. Florczak
  • Publication number: 20040124563
    Abstract: A method of increasing the efficiency of a multiphoton absorption process and apparatus. The method includes: providing a photoreactive composition; providing a source of sufficient light for simultaneous absorption of at least two photons; exposing the photoreactive composition to at least one transit of light from the light source; and directing at least a portion of the first transit of the light back into the photoreactive composition using at least one optical element, wherein a plurality of photons not absorbed in at least one transit are used to expose the photoreactive composition in a subsequent transit.
    Type: Application
    Filed: December 12, 2002
    Publication date: July 1, 2004
    Inventors: Patrick R. Fleming, Robert J. DeVoe, Catherine A. Leatherdale, Todd A. Balen, Jeffrey M. Florczak
  • Publication number: 20040012872
    Abstract: Methods for producing a region of at least partially reacted material in a photoreactive composition and apparatus. The methods include: providing a photoreactive composition; providing a source of sufficient light for simultaneous absorption of at least two photons by the photoreactive composition; providing an exposure system capable of inducing image-wise multiphoton absorption; generating a non-random three-dimensional pattern of light by means of the exposure system; and exposing the photoreactive composition to the three-dimensional pattern of light generated by the exposure system to at least partially react a portion of the material in correspondence with the non-random three-dimensional pattern of light incident thereon.
    Type: Application
    Filed: December 12, 2002
    Publication date: January 22, 2004
    Inventors: Patrick R Fleming, Robert J. DeVoe, Nicholas A Stacey, Catherine A Leatherdale, Robert D. DeMaster, Todd A. Ballen, Jeffrey M Florczak
  • Patent number: 6586153
    Abstract: A thermal transfer element for forming a multilayer device may include a substrate and a multicomponent transfer unit that, when transferred to a receptor, is configured and arranged to form a first operational layer and a second operational layer of a multilayer device. In at least some instances, the thermal transfer element also includes a light-to-heat conversion (LTHC) layer that can convert light energy to heat energy to transfer the multicomponent transfer unit. Transferring the multicomponent transfer unit to the receptor may include contacting a receptor with a thermal transfer element having a substrate and a multicomponent transfer unit. Then, the thermal transfer element is selectively heated to transfer the multicomponent transfer unit to the receptor according to a pattern to form at least first and second operational layers of a device.
    Type: Grant
    Filed: May 2, 2002
    Date of Patent: July 1, 2003
    Assignee: 3M Innovative Properties Company
    Inventors: Martin B. Wolk, Paul F. Baude, Jeffrey M. Florczak, Fred B. McCormick, Yong Hsu
  • Patent number: 6582876
    Abstract: Disclosed are thermal transfer elements and processes for patterning solvent-coated layers and solvent-susceptible layers onto the same receptor substrate. These donor elements and methods are particularly suited for making organic electroluminescent devices and displays. The donor elements can include a substrate, an optional light-to-heat conversion layer, and a single or multicomponent transfer layer that can be imagewise transferred to a receptor to form an organic electroluminescent device, portions thereof, or components therefor. The methods offer advantages over conventional patterning techniques such as photolithography, and make it possible to fabricate new organic electroluminescent device constructions.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: June 24, 2003
    Assignee: 3M Innovative Properties Company
    Inventors: Martin B. Wolk, Paul F. Baude, Jeffrey M. Florczak, Fred B. McCormick, Yong Hsu
  • Publication number: 20020197554
    Abstract: Disclosed are thermal transfer elements and processes for patterning solvent-coated layers and solvent-susceptible layers onto the same receptor substrate. These donor elements and methods are particularly suited for making organic electroluminescent devices and displays. The donor elements can include a substrate, an optional light-to-heat conversion layer, and a single or multicomponent transfer layer that can be imagewise transferred to a receptor to form an organic electroluminescent device, portions thereof, or components therefor. The methods offer advantages over conventional patterning techniques such as photolithography, and make it possible to fabricate new organic electroluminescent device constructions.
    Type: Application
    Filed: June 21, 2002
    Publication date: December 26, 2002
    Applicant: 3M Innovative Properties Company
    Inventors: Martin B. Wolk, Paul F. Baude, Jeffrey M. Florczak, Fred B. McCormick, Yong Hsu