Patents by Inventor Jeffrey M. Jelen

Jeffrey M. Jelen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8463343
    Abstract: An optical sensor for a medical device includes a fixed lens spacing between emit and receive modules to achieve target sensor sensitivity, while varying other sensor parameters in order to increase signal amplitude without increasing power demand. An optical sensor connected to a housing of a medical device includes a circuit board, an opto-electronic component, a wall, a lens, and a ferrule. The circuit board is arranged within the housing. The opto-electronic component is mounted on a surface of the circuit board. The wall protrudes from the surface of the circuit board and surrounds the opto-electronic component. The lens is offset from the surface of the circuit board. The ferrule is connected to the housing, the lens and the wall. An inner surface of the wall mates with an outer surface of the ferrule.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: June 11, 2013
    Assignee: Medtronic, Inc.
    Inventors: Jonathan L. Kuhn, Thomas A. Anderson, Can Cinbis, Jeffrey M. Jelen, Timothy Davis, James K. Carney
  • Patent number: 8406836
    Abstract: An optical sensor for a medical device includes a fixed lens spacing between emit and receive modules to achieve target sensor sensitivity, while varying other sensor parameters in order to increase signal amplitude without increasing power demand. The arrangement of an opto-electronic component within an optical sensor receive module is improved by masking the receive module lens with an opaque member to create a masked lens leading edge that is aligned with a leading edge of the opto-electronic component.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: March 26, 2013
    Assignee: Medtronic, Inc.
    Inventors: Jonathan L. Kuhn, Thomas A. Anderson, Can Cinbis, Jeffrey M. Jelen, Timothy Davis, James K. Carney
  • Patent number: 8320984
    Abstract: An optical sensor for a medical device includes a fixed lens spacing between emit and receive modules to achieve target sensor sensitivity, while varying other sensor parameters in order to increase signal amplitude without increasing power demand. The size of at least one of emit and receive module lenses of an optical sensor, and the offset between the opto-electronic component and the respective lens of at least one of emit and receive modules is decreased to increase amplitude of the signal received by the receive module from the emit module.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: November 27, 2012
    Assignee: Medtronic, Inc.
    Inventors: Jonathan L. Kuhn, Thomas A. Anderson, Can Cinbis, Jeffrey M. Jelen, Timothy Davis, James K. Carney
  • Patent number: 8275432
    Abstract: An implantable optical sensor and associated manufacturing method include a sensor housing having an inner surface and an outer surface and a window formed in the housing extending between the housing inner surface and the housing outer surface. An opto-electronic device enclosed within the housing and having a photonic surface is operatively positioned proximate the window for emitting light through the window or detecting light through the window. An optical coupling member is positioned between the opto-electronic device and the window for reducing light reflection at a surface within the implantable optical sensor.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: September 25, 2012
    Assignee: Medtronic, Inc.
    Inventors: Jonathan L. Kuhn, Timothy J. Davis, Can Cinbis, Robert M. Ecker, Shawn D. Knowles, Thomas A. Anderson, Jeffrey M. Jelen
  • Patent number: 8275435
    Abstract: An implantable medical device having an optical sensor selects the function of modular opto-electronic assemblies included in the optical sensor. Each assembly is provided with at least one light emitting device and at least one light detecting device. A device controller coupled to the optical sensor controls the function of each the assemblies. The controller executes a sensor performance test and selects at least one of the plurality of assemblies to operate as a light emitting assembly in response to a result of the performance test. The controller selects at least one other of the plurality of optical sensor assemblies to operate as a light detecting assembly in response to a result of the performance test.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: September 25, 2012
    Assignee: Medtronic, Inc.
    Inventors: Jonathan L. Kuhn, Jonathan P. Roberts, Andrew J. Ries, James D. Reinke, Jeffrey M. Jelen, Robert M. Ecker, Timothy J. Davis, Can Cinbis, Thomas A. Anderson
  • Patent number: 8216134
    Abstract: An implantable medical device is manufactured with a hermetically sealed housing and a modular assembly enclosed within the housing. The modular assembly includes a circuit board, an electronic component mounted on a top surface of the circuit board, and a wall formed having an outer surface and an inner surface separated by a top edge and a bottom edge, the wall bottom edge positioned against the circuit board such that the wall encircles the electronic component coupled to the circuit board. The wall top edge is coupled to the housing a ferrule in one embodiment.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: July 10, 2012
    Assignee: Medtronic, Inc.
    Inventors: Andrew J. Ries, Jeffrey O. York, Stephen R. Belcher, Jeffrey M. Jelen
  • Publication number: 20110190608
    Abstract: An optical sensor for a medical device includes a fixed lens spacing between emit and receive modules to achieve target sensor sensitivity, while varying other sensor parameters in order to increase signal amplitude without increasing power demand. The size of at least one of emit and receive module lenses of an optical sensor, and the offset between the opto-electronic component and the respective lens of at least one of emit and receive modules is decreased to increase amplitude of the signal received by the receive module from the emit module.
    Type: Application
    Filed: April 22, 2010
    Publication date: August 4, 2011
    Applicant: Medtronic, Inc.
    Inventors: Jonathan L. Kuhn, Thomas A. Anderson, Can Cinbis, Jeffrey M. Jelen, Timothy Davis, James K. Carney
  • Publication number: 20110190609
    Abstract: An optical sensor for a medical device includes a fixed lens spacing between emit and receive modules to achieve target sensor sensitivity, while varying other sensor parameters in order to increase signal amplitude without increasing power demand. An optical sensor connected to a housing of a medical device includes a circuit board, an opto-electronic component, a wall, a lens, and a ferrule. The circuit board is arranged within the housing. The opto-electronic component is mounted on a surface of the circuit board. The wall protrudes from the surface of the circuit board and surrounds the opto-electronic component. The lens is offset from the surface of the circuit board. The ferrule is connected to the housing, the lens and the wall. An inner surface of the wall mates with an outer surface of the ferrule.
    Type: Application
    Filed: April 22, 2010
    Publication date: August 4, 2011
    Applicant: Medtronic, Inc.
    Inventors: Jonathan L. Kuhn, Thomas A. Anderson, Can Cinbis, Jeffrey M. Jelen, Timothy Davis, James K. Carney
  • Publication number: 20110190610
    Abstract: An optical sensor for a medical device includes a fixed lens spacing between emit and receive modules to achieve target sensor sensitivity, while varying other sensor parameters in order to increase signal amplitude without increasing power demand. The arrangement of an opto-electronic component within an optical sensor receive module is improved by masking the receive module lens with an opaque member to create a masked lens leading edge that is aligned with a leading edge of the opto-electronic component.
    Type: Application
    Filed: April 22, 2010
    Publication date: August 4, 2011
    Applicant: Medtronic, Inc.
    Inventors: Jonathan L. Kuhn, Thomas A. Anderson, Can Cinbis, Jeffrey M. Jelen, Timothy Davis, James K. Carney
  • Publication number: 20100185262
    Abstract: An implantable medical device having an optical sensor selects the function of modular opto-electronic assemblies included in the optical sensor. Each assembly is provided with at least one light emitting device and at least one light detecting device. A device controller coupled to the optical sensor controls the function of each the assemblies. The controller executes a sensor performance test and selects at least one of the plurality of assemblies to operate as a light emitting assembly in response to a result of the performance test.
    Type: Application
    Filed: January 21, 2010
    Publication date: July 22, 2010
    Inventors: Jonathan L. Kuhn, Jonathan P. Roberts, Andrew J. Ries, James D. Reinke, Jeffrey M. Jelen, Robert M. Ecker, Timothy J. Davis, Can Cinbis, Thomas A. Anderson
  • Publication number: 20090156905
    Abstract: An implantable medical device is manufactured with a hermetically sealed housing and a modular assembly enclosed within the housing. The modular assembly includes a circuit board, an electronic component mounted on a top surface of the circuit board, and a wall formed having an outer surface and an inner surface separated by a top edge and a bottom edge, the wall bottom edge positioned against the circuit board such that the wall encircles the electronic component coupled to the circuit board. The wall top edge is coupled to the housing a ferrule in one embodiment.
    Type: Application
    Filed: May 7, 2008
    Publication date: June 18, 2009
    Inventors: Andrew J. Ries, Jeffrey O. York, Stephen R. Belcher, Jeffrey M. Jelen