Patents by Inventor Jeffrey M. Kaiser

Jeffrey M. Kaiser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120053765
    Abstract: A method of operating a hybrid powertrain having an internal combustion engine monitors a throttle intake pressure and calculates a first torque capacity from a pressure model using the throttle intake pressure as an input. The method determines a maximum expected air mass from the monitored throttle intake pressure and calculates a second torque capacity from an air mass model using the maximum expected air mass volume as an input. The method calculates a final torque capacity as a function of the first torque capacity and the second torque capacity, and sends the final torque capacity to the hybrid control processor. An engine control module receives a torque request calculated as a function of the final torque capacity. A manifold pressure request is calculated as a function of the torque request, and a throttle is actuated as a function of the manifold pressure request.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Christopher E. Whitney, Jeffrey M. Kaiser, Dennis A. Light, Anthony H. Heap, Honghao Tan
  • Publication number: 20120029787
    Abstract: An engine control system includes a desired manifold absolute pressure (MAP) module, a MAP to torque module, a threshold determination module, and a fuel economy (FE) mode module. The desired MAP module determines a desired MAP for operation of an engine in one of a cylinder deactivation mode and a low-lift mode based on a difference between a desired vacuum and an air pressure upstream of a throttle valve. The MAP to torque module determines a desired torque output of the engine for operation in the one of the cylinder deactivation mode and the low-lift mode based on the desired MAP. The threshold determination module determines an entry torque based on the desired torque output. The FE mode module selectively triggers operation in the one of the cylinder deactivation mode and the low-lift mode based on a comparison of the entry torque and a torque request.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 2, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Christopher E. Whitney, Andrew W. Baur, Alfred E. Spitza, JR., Zhong Li, Jeffrey M. Kaiser
  • Patent number: 8086390
    Abstract: An engine control system comprises a base air per cylinder (APC) module, a catalyst temperature adjustment module, an ambient temperature adjustment module, and an APC adjustment module. The base APC module determines a base APC to reduce first engine pumping losses during a first deceleration fuel cutoff (DFCO) event relative to second engine pumping losses during a second DFCO event. The catalyst temperature adjustment module determines a catalyst temperature adjustment based on a catalyst temperature during the first DFCO event. The ambient temperature adjustment module determines an ambient temperature adjustment based on an ambient air temperature during the first DFCO event. The APC adjustment module selectively adjusts the base APC based on the catalyst temperature adjustment and the ambient temperature adjustment and controls at least one of the engine airflow actuators based on the adjusted base APC during the first DFCO event.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: December 27, 2011
    Inventors: Christopher E. Whitney, Poh Fong Chin, William L. Aldrich, III, Anthony H. Heap, Jeffrey M. Kaiser, Jun Lu
  • Publication number: 20110253100
    Abstract: An engine control system includes a disturbance module, a torque correction module, a torque-to-spark module, and a spark correction module. The disturbance module determines a disturbance value for a past combustion stroke of a cylinder of an engine based on rotation of a crankshaft. The torque correction module selectively determines a torque correction for a future combustion stroke of the cylinder based on the disturbance value. The torque-to-spark module determines a spark correction based on the torque correction and determines an uncorrected spark timing based on a torque request. The spark correction module determines a corrected spark timing based on the uncorrected spark timing and the spark correction and generates spark during the future combustion stroke based on the corrected spark timing.
    Type: Application
    Filed: April 19, 2010
    Publication date: October 20, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Jeffrey M. Kaiser, Timothy M. Karnjate, Christopher E. Whitney, Zhong Li, David S. Mathews, Eric B. Ferch, Pahngroc Oh
  • Patent number: 7980221
    Abstract: An engine control system includes a spark bound module that determines a bounded spark value based on a desired spark value, a torque bound module that determines a bounded torque value based on the bounded spark value and a desired torque value, and an inverse torque calculation module that determines a desired engine air value based on the bounded torque value and the square of the bounded spark value. The engine air value may be one of a desired air-per-cylinder value and a desired manifold air pressure value. The bounded spark value and the bounded torque value are determined based on one or more of a plurality of engine actuator positions. Related methods for determining the bounded spark value, the bounded torque value, and the engine air value are also provided.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: July 19, 2011
    Inventors: Andrew W. Baur, Jeffrey M. Kaiser, Michael Livshiz, Christopher E. Whitney, Sharon L. Storch, Bahram Younessi, Klaus Pochner
  • Publication number: 20110132324
    Abstract: A method of operating an engine of a vehicle includes generating a first torque request. The method includes generating a second torque request that is greater than and based on the first torque request, increasing a torque output of the engine based on the second torque request at a first rate and during a first period, and increasing the torque output of the engine based on the first torque request at a second rate and during a second period. The first period is distinct from and before the second period, and the first rate is greater than the second rate.
    Type: Application
    Filed: December 8, 2009
    Publication date: June 9, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Michael L. Kociba, Richard B. Jess, Zhong Li, Jeffrey M. Kaiser, Michael Livshiz
  • Publication number: 20110118955
    Abstract: An engine control system for a vehicle includes a power request determination module, a desired speed determination module, and a torque control module. The power request determination module determines a power request for an engine based on a request from a driver of the vehicle and a speed of the vehicle. The desired speed determination module determines a desired speed of the engine based on a speed of a turbine in a torque converter of the engine, a state of a clutch in the torque converter, and one of the power request, a first amount of clutch slip, and a second amount of clutch slip. The torque control module determines a desired engine torque based on the desired engine speed and the power request and controls torque output of the engine based on the desired engine torque.
    Type: Application
    Filed: November 19, 2009
    Publication date: May 19, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Michael Livshiz, Jeffrey M. Kaiser, Ronald W. Van Diepen
  • Publication number: 20110112734
    Abstract: A control system for a vehicle, comprises a torque determination module, a control module, and a transmission control module. The torque determination module determines torque produced by an internal combustion engine. The control module sets a signal to an active state when the torque is greater than a predetermined torque and a slip amount between an engine output speed and a transmission input speed is zero. The predetermined torque corresponds to a potential vibration amount when the slip amount is zero. The transmission control module selectively increases the slip amount above zero in response to the setting of the signal to the active state.
    Type: Application
    Filed: January 28, 2010
    Publication date: May 12, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: CHRISTOPHER E. WHITNEY, WILLIAM L. ALDRICH, III, JEFFREY M. KAISER, DANIEL J. WICKMAN, SCOTT A. HEARLD
  • Publication number: 20110100013
    Abstract: An engine control system comprises a base air per cylinder (APC) module, a catalyst temperature adjustment module, an ambient temperature adjustment module, and an APC adjustment module. The base APC module determines a base APC to reduce first engine pumping losses during a first deceleration fuel cutoff (DFCO) event relative to second engine pumping losses during a second DFCO event. The catalyst temperature adjustment module determines a catalyst temperature adjustment based on a catalyst temperature during the first DFCO event. The ambient temperature adjustment module determines an ambient temperature adjustment based on an ambient air temperature during the first DFCO event. The APC adjustment module selectively adjusts the base APC based on the catalyst temperature adjustment and the ambient temperature adjustment and controls at least one of the engine airflow actuators based on the adjusted base APC during the first DFCO event.
    Type: Application
    Filed: December 2, 2009
    Publication date: May 5, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Christopher E. Whitney, Poh Fong Chin, William L. Aldrich, III, Anthony H. Heap, Jeffrey M. Kaiser, Jun Lu
  • Publication number: 20110087418
    Abstract: A control system and method of controlling operation of an internal combustion engine includes a load determination module that determines an engine load, an equivalence ratio module that determines an equivalence ratio, a correction factor module that generates a correction factor based on the engine load, the equivalence ratio, and the engine speed and an engine operation module that regulates operation of the engine based on the correction factor.
    Type: Application
    Filed: October 8, 2009
    Publication date: April 14, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Wenbo Wang, Layne K. Wiggins, Jeffrey M. Kaiser, Chao F. Daniels
  • Patent number: 7885756
    Abstract: A control system is provided and includes a catalyst module that generates a multi-mode enable signal based on a catalyst light off enable signal. A transition control module controls transitions between a single pulse mode and multi-pulse mode based on the multi-mode enable signal. The transition control module receives a first torque signal and generates a second torque signal based on the first torque signal. The engine torque control module generates an air per cylinder signal, a throttle area signal, and a spark timing signal based on the second torque signal. The single pulse mode is associated with a single fuel injection pulse per combustion cycle. The multi-pulse mode is associated with multiple fuel injection pulses per combustion cycle.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: February 8, 2011
    Inventors: Michael Livshiz, Jeffrey M. Kaiser, Christopher R. Graham, Christopher E. Whitney, Robert Francis Semrau, Brian D Francis
  • Patent number: 7878175
    Abstract: A coordinated torque control system includes a catalyst module that generates a multi-mode enable signal based on a catalyst light off enable signal. A torque reserve module generates a torque reserve signal based on the multi-mode enable signal, an engine speed signal and an air per cylinder signal. The torque reserve module operates in a multi-pulse mode that is associated with injecting N pulses of fuel into a combustion chamber during a combustion cycle of the engine based on the multi-mode enable signal. N is an integer greater than or equal to 2.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: February 1, 2011
    Inventors: Michael Livshiz, Jeffrey M. Kaiser, Christopher R. Graham, Christopher E. Whitney, Robert Francis Semrau, Brian D. Francis
  • Patent number: 7870843
    Abstract: An engine control system includes a scavenging module that generates a scavenging signal when both a driver torque request is greater than a predetermined torque threshold and a rotational speed of an engine crankshaft is less than a predetermined speed threshold. A cam phaser control module controls intake and exhaust cam phasers based on the scavenging signal such that opening times of intake and exhaust valves of a respective cylinder overlap.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: January 18, 2011
    Inventors: Layne K. Wiggins, Michael Livshiz, Jeffrey M. Kaiser, Henrik Nordin
  • Patent number: 7856304
    Abstract: A method of achieving a desired torque output of an internal combustion engine includes determining a first air-per-cylinder (APC) value based on a first APC relationship and determining a second APC value based on a second APC relationship. An APC error is determined based on the second APC value. Operation of the engine is regulated based on the first APC value when the APC error is greater than a threshold error. Operation of the engine based on the second APC value when the APC error is not greater than the threshold error.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: December 21, 2010
    Inventors: Michael Livshiz, Jeffrey M. Kaiser, Christopher E. Whitney, John A. Jacobs, Richard B. Jess
  • Patent number: 7822528
    Abstract: An engine control system comprises a torque request module, an immediate torque control module, an actuation module, and an expected torque control module. The torque request module generates an expected torque request and an immediate torque request. The immediate torque control module controls a spark advance of an engine based on the immediate torque request. The actuation module selectively reduces the expected torque request based on the immediate torque request and a spark capacity. The spark capacity is based on a difference between a first engine torque and a second engine torque, determined at a current airflow. The first engine torque is determined at a first spark advance and the second engine torque is determined at a second spark advance that is less than the first spark advance. The expected torque control module that controls a throttle valve area based on the expected torque request.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: October 26, 2010
    Inventors: Christopher E. Whitney, Richard B. Jess, Jeffrey M. Kaiser, Weixin Yan, Michael Livshiz, Robert C. Simon, Jr., Leonard G. Wozniak
  • Publication number: 20100263627
    Abstract: A control system includes a throttle control module, an exhaust gas recirculation (EGR) control module, and a diagnostic control module. The throttle control module selectively maintains a desired throttle area when a vehicle is in a coastdown mode. The EGR control module opens an EGR valve when the desired throttle area is maintained. The diagnostic control module selectively diagnoses an error of an EGR system based on a pressure increase measured in an intake manifold of the vehicle when the EGR valve is open.
    Type: Application
    Filed: January 5, 2010
    Publication date: October 21, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Christopher E. Whitney, Gregory J. York, Jeffrey M. Kaiser, Katie C. Bonasse
  • Patent number: 7788024
    Abstract: A torque control system comprises a torque correction factor module, a RPM-torque transition module, and a selection module. The torque correction factor module determines a first torque correction factor and a second torque correction factor. The RPM-torque transition module stores the first torque correction factor. The selection module selectively outputs one of the first torque correction factor and the second torque correction factor based on a control mode of the torque control system.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: August 31, 2010
    Inventors: Michael Livshiz, Christopher E. Whitney, Jeffrey M. Kaiser, Todd R. Shupe, Scott J. Chynoweth, Lan Wang
  • Patent number: 7765052
    Abstract: A control system for a hybrid vehicle including an engine with cylinder deactivation comprises an engine time off module that determines an engine time off value. A re-purge determining module estimates a re-purge time required to purge a hydraulic control system of the engine of air before initiating cylinder deactivation. The re-purge time is estimated based on the engine time off value and an engine temperature.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: July 27, 2010
    Inventors: Jeffrey M. Kaiser, Michael J. Pitsch, James B. Hicks, William C. Albertson
  • Patent number: 7757666
    Abstract: An engine control system comprises a torque control module and a fueling control module. The torque control module selectively generates a deactivation signal for a first cylinder of a plurality of cylinders of an engine based on a torque request. The fueling control module halts fuel delivery to the first cylinder based on the deactivation signal. The torque control module increases a spark advance of the engine at a first time after the fueling control module halts fuel injection for the first cylinder. The first time corresponds to an initial time combustion fails to occur in the first cylinder because fuel delivery has been halted.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: July 20, 2010
    Inventors: Christopher E. Whitney, Mark D. Carr, Jeffrey M. Kaiser, Michael J. Pitsch, Bahram Younessi
  • Patent number: 7748362
    Abstract: An engine control system includes an air control module, a spark control module, a torque control module, a transient detection module, and a launch torque module. The air control module controls a throttle valve of an engine based on a commanded predicted torque. The spark control module controls spark advance of the engine based on a commanded immediate torque. The torque control module increases the commanded predicted torque when a catalyst light-off (CLO) mode is active, and increases the commanded immediate torque when a driver actuates an accelerator input. The transient detection module generates a lean transient signal when an air per cylinder increase is detected while the CLO mode is active. The launch torque module generates a torque offset signal based on the lean transient signal. The torque control module increases the commanded immediate torque based on the torque offset signal.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: July 6, 2010
    Inventors: Christopher E. Whitney, Michael S. Emmorey, Jeffrey M. Kaiser, Robert C. Simon, Jr., Cheryl A. Williams, Jon C. Wasberg, Eric Ferch, Craig M. Sawdon