Patents by Inventor Jeffrey M. Markakis

Jeffrey M. Markakis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10866262
    Abstract: A device for microscopically precise positioning and guidance of a measurement or manipulation element in at least two spatial axes, comprising an outer base with side walls defining a base interior, and an xy-stage having side walls and mounting means for at least one measurement or manipulation element, the xy-stage being arranged inside of the base interior and being displaceable in an XY-plane relative to the outer base. The xy-stage is coupled to the outer base with bending elements, and with actuators designed for displacing the xy-stage relative to the outer base. The outer base is provided with at least one stiffening element rigidly connected to the side walls of the outer base, and/or that the xy-stage is provided with at least one stiffening element rigidly connected to the side walls of the xy-stage.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: December 15, 2020
    Assignee: GETEC MICROSCOPY GMBH
    Inventors: Peter Ziger, Georg E. Fantner, Jeffrey M. Markakis
  • Publication number: 20200141971
    Abstract: A device for microscopically precise positioning and guidance of a measurement or manipulation element in at least two spatial axes, comprising an outer base with side walls defining a base interior, and an xy-stage having side walls and mounting means for at least one measurement or manipulation element, the xy-stage being arranged inside of the base interior and being displaceable in an XY-plane relative to the outer base. The xy-stage is coupled to the outer base with bending elements, and with actuators designed for displacing the xy-stage relative to the outer base. The outer base is provided with at least one stiffening element rigidly connected to the side walls of the outer base, and/or that the xy-stage is provided with at least one stiffening element rigidly connected to the side walls of the xy-stage.
    Type: Application
    Filed: June 7, 2018
    Publication date: May 7, 2020
    Inventors: Peter ZIGER, Georg E. FANTNER, Jeffrey M. MARKAKIS
  • Patent number: 8800998
    Abstract: A semiconductor wafer processing tool has a support structure for a coarse motion positioning system. A measurement head having a rigid super structure is supported from the support structure by vibration isolators and a top plate is mounted to the super structure. A vacuum transfer chuck is releasably carried by the coarse motion positioning system and releasably adherable to the top plate by application of vacuum. The vacuum transfer chuck supports a semiconductor wafer.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: August 12, 2014
    Assignee: Multiprobe, Inc.
    Inventors: Andrew N. Erickson, Jeffrey M. Markakis, Anton L. Riley
  • Publication number: 20130168929
    Abstract: A semiconductor wafer processing tool has a support structure for a coarse motion positioning system. A measurement head having a rigid super structure is supported from the support structure by vibration isolators and a top plate is mounted to the super structure. A vacuum transfer chuck is releasably carried by the coarse motion positioning system and releasably adherable to the top plate by application of vacuum. The vacuum transfer chuck supports a semiconductor wafer.
    Type: Application
    Filed: December 30, 2011
    Publication date: July 4, 2013
    Applicant: MULTIPROBE, INC.
    Inventors: Andrew N. Erickson, Jeffrey M. Markakis, Anton Riley
  • Patent number: 7770231
    Abstract: A method and apparatus are provided that have the capability of rapidly scanning a large sample of arbitrary characteristics under force control feedback so has to obtain a high resolution image. The method includes generating relative scanning movement between a probe of the SPM and a sample to scan the probe through a scan range of at least 4 microns at a rate of at least 30 lines/sec and controlling probe-sample interaction with a force control slew rate of at least 1 mm/sec. A preferred SPM capable of achieving these results has a force controller having a force control bandwidth of at least closed loop bandwidth of at least 10 kHz.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: August 3, 2010
    Assignee: Veeco Instruments, Inc.
    Inventors: Craig Prater, Chanmin Su, Nghi Phan, Jeffrey M. Markakis, Craig Cusworth, Jian Shi, Johannes H. Kindt, Steven F. Nagle, Wenjun Fan
  • Publication number: 20090032706
    Abstract: A method and apparatus are provided that have the capability of rapidly scanning a large sample of arbitrary characteristics under force control feedback so has to obtain a high resolution image. The method includes generating relative scanning movement between a probe of the SPM and a sample to scan the probe through a scan range of at least 4 microns at a rate of at least 30 lines/sec and controlling probe-sample interaction with a force control slew rate of at least 1 mm/sec. A preferred SPM capable of achieving these results has a force controller having a force control bandwidth of at least closed loop bandwidth of at least 10 kHz.
    Type: Application
    Filed: August 2, 2007
    Publication date: February 5, 2009
    Inventors: Craig Prater, Chanmin Su, Nghi Phan, Jeffrey M. Markakis, Craig Cusworth, Jian Shi, Johannes H. Kindt, Steven F. Nagle, Wenjun Fan