Patents by Inventor Jeffrey M. Roth

Jeffrey M. Roth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7627251
    Abstract: A communication device uses one or two stacks of reflective deflectors to steer the electromagnetic waves carrying signals received and transmitted through a single telescope/aperture device. The signals outside the device may be circularly polarized while inside the device they are linearly polarized most of the time. The deflectors within each stack are transparent to the signals steered by the deflectors behind them. Since the deflecting wave band may shift with the changing angle of incidence of the signals due to steering, the wave bands are sufficiently spaced apart. When the signals impact the deflectors at nearly normal angles, the wave bands can be made more narrow. When more than one stack of deflectors is used, the spacing between the wave bands within one stack may be utilized by another stack.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: December 1, 2009
    Assignee: Massachusetts Institute of Technology
    Inventors: Frederick G. Walther, Jeffrey M. Roth, William E. Keicher, Alan E. DeCew
  • Patent number: 7024111
    Abstract: Apparatus and method is described for using a silicon photon-counting avalanche photodiode (APD) to detect at least two-photon absorption (TPA) of an optical signal, the optical signal having a wavelength range extending from 1.2 ?m to an upper wavelength region that increases as the number of photons simultaneously absorbed by the APD increases beyond two. In one embodiment, the TPA count is used by a signal compensation apparatus to reduce dispersion of a received optical pulse communication signal subjected to group velocity dispersion, polarization mode dispersion, or other signal impairment phenomena which effect the TPA count. Another embodiment, the TPA count is used to determine the optical signal-to-noise ratio of a received optical pulse communication signal. Another embodiment uses the TPA count to determine the autocorrelation between a first and second optical pulse signals as a function of the relative delay between the first and second optical pulse signals.
    Type: Grant
    Filed: March 16, 2002
    Date of Patent: April 4, 2006
    Assignee: Lucent Technologies Inc.
    Inventors: Wayne Harvey Knox, Jeffrey M. Roth, Chunhui Xu
  • Publication number: 20040151495
    Abstract: Apparatus and method is described for using a silicon photon-counting avalanche photodiode (APD) to detect at least two-photon absorption (TPA) of an optical signal, the optical signal having a wavelength range extending from 1.2 &mgr;m to an upper wavelength region that increases as the number of photons simultaneously absorbed by the APD increases beyond two. In one embodiment, the TPA count is used by a signal compensation apparatus to reduce dispersion of a received optical pulse communication signal subjected to group velocity dispersion, polarization mode dispersion, or other signal impairment phenomena which effect the TPA count. Another embodiment, the TPA count is used to determine the optical signal-to-noise ratio of a received optical pulse communication signal. Another embodiment uses the TPA count to determine the autocorrelation between a first and second optical pulse signals as a function of the relative delay between the first and second optical pulse signals.
    Type: Application
    Filed: March 16, 2002
    Publication date: August 5, 2004
    Inventors: Wayne Harvey Knox, Jeffrey M. Roth, Chunhui Xu
  • Publication number: 20040081466
    Abstract: A communication device uses one or two stacks of reflective deflectors to steer the electromagnetic waves carrying signals received and transmitted through a single telescope/aperture device. The signals outside the device may be circularly polarized while inside the device they are linearly polarized most of the time. The deflectors within each stack are transparent to the signals steered by the deflectors behind them. Since the deflecting wave band may shift with the changing angle of incidence of the signals due to steering, the wave bands are sufficiently spaced apart. When the signals impact the deflectors at nearly normal angles, the wave bands can be made more narrow. When more than one stack of deflectors is used, the spacing between the wave bands within one stack may be utilized by another stack.
    Type: Application
    Filed: June 24, 2003
    Publication date: April 29, 2004
    Applicant: Massachusetts Institute of Technology
    Inventors: Frederick G. Walther, Jeffrey M. Roth, William E. Keicher, Alan E. DeCew