Patents by Inventor Jeffrey M. Shock

Jeffrey M. Shock has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9021838
    Abstract: Submerged combustion systems and methods of use to produce glass. One system includes a submerged combustion melter having a roof, a floor, a wall structure connecting the roof and floor, and an outlet, the melter producing an initial foamy molten glass. One or more non-submerged auxiliary burners are positioned in the roof and/or wall structure and configured to deliver combustion products to impact at least a portion of the bubbles with sufficient force and/or heat to burst at least some of the bubbles and form a reduced foam molten glass.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: May 5, 2015
    Inventors: Mark William Charbonneau, Aaron Morgan Huber, Jeffrey M. Shock, Harley Allen Borders
  • Patent number: 8997525
    Abstract: Submerged combustion systems and methods of use to produce foamed glass. One system includes a submerged combustion melter having an outlet, the melter configured to produce an initial foamy molten glass having a density and comprising bubbles filled primarily with combustion product gases. The initial foamy molten glass is deposited directly onto or into a transport apparatus that transports the initial foamy molten glass to a downstream processing apparatus. An intermediate stage may be included between the melter and the transport apparatus. One intermediate stage is a channel that includes gas injectors. Another intermediate stage is a channel that produces an upper flow of a less dense glass and a relatively more dense glass lower flow. The upper flow may be processed into foamed glass products, while the more dense flow may be processed into dense glass products.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: April 7, 2015
    Assignee: Johns Manville
    Inventors: Jeffrey M. Shock, Aaron Morgan Huber, Timothy G. Swales
  • Patent number: 8991215
    Abstract: Methods and systems for controlling bubble size and bubble decay rate of glass foams formed during submerged combustion melting. Flowing a molten mass of foamed glass comprising molten glass and bubbles entrained therein into an apparatus downstream of a submerged combustion melter. The downstream apparatus has a floor, a roof, and a sidewall structure connecting the floor and roof. The foamed glass has glass foam of glass foam bubbles on its top surface, and the downstream apparatus defines a space for a gaseous atmosphere above and in contact with the glass foam. The downstream apparatus includes heating components to heat or maintain temperature of the foamed glass. Adjusting composition of the atmosphere above the glass foam, and/or contacting the foam with a liquid or solid composition controls bubble size of the glass foam bubbles, and/or foam decay rate.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: March 31, 2015
    Assignee: Johns Manville
    Inventors: Jeffrey M Shock, Mark William Charbonneau
  • Publication number: 20140208800
    Abstract: Methods and systems for determining density or density gradient of molten foamed glass in a glass melter, an apparatus downstream of a glass melter, or both. A molten foamed glass is generated having molten glass and bubbles entrained therein and/or a layer of glass foam on a top surface thereof in a melter. At least a portion of the molten foamed glass is transferred into an apparatus positioned downstream of the melter, and the density or density gradient of the molten foamed glass in the melter or downstream apparatus is determined as a function of distance from a structural feature of the melter or downstream apparatus, or both, using one or more electromagnetic (EM) wave-based sensors.
    Type: Application
    Filed: January 29, 2013
    Publication date: July 31, 2014
    Applicant: JOHNS MANVILLE
    Inventors: Jonathan McCann, Jeffrey M. Shock, Bryan Keith Nesti, John Euford Mobley
  • Publication number: 20140144185
    Abstract: Methods and systems produce a molten mass of foamed glass in a submerged combustion melter (SCM). Routing foamed glass to a fining chamber defined by a flow channel fluidly connected to and downstream of the SCM. The flow channel floor and sidewalls have sufficient glass-contact refractory to accommodate expansion of the foamed glass as fining occurs during transit through the fining chamber. The foamed glass is separated into an upper glass foam phase and a lower molten glass phase as the foamed glass flows toward an end of the flow channel distal from the SCM. The molten glass is then routed through a transition section fluidly connected to the distal end of the flow channel. The transition section inlet end construction has at least one molten glass inlet aperture, such that the inlet aperture(s) are positioned lower than the phase boundary between the upper and lower phases.
    Type: Application
    Filed: November 29, 2012
    Publication date: May 29, 2014
    Applicant: JOHNS MANVILLE
    Inventors: Jeffrey M. Shock, Aaron Morgan Huber
  • Publication number: 20140090421
    Abstract: Methods and systems for controlling bubble size and bubble decay rate of glass foams formed during submerged combustion melting. Flowing a molten mass of foamed glass comprising molten glass and bubbles entrained therein into an apparatus downstream of a submerged combustion melter. The downstream apparatus has a floor, a roof, and a sidewall structure connecting the floor and roof. The foamed glass has glass foam of glass foam bubbles on its top surface, and the downstream apparatus defines a space for a gaseous atmosphere above and in contact with the glass foam. The downstream apparatus includes heating components to heat or maintain temperature of the foamed glass. Adjusting composition of the atmosphere above the glass foam, and/or contacting the foam with a liquid or solid composition controls bubble size of the glass foam bubbles, and/or foam decay rate.
    Type: Application
    Filed: October 3, 2012
    Publication date: April 3, 2014
    Applicant: JOHNS MANVILLE
    Inventors: Jeffrey M Shock, Mark William Charbonneau
  • Publication number: 20140007622
    Abstract: Processes and systems for producing molten glass using submerged combustion melters, including densifying an initial composition comprising vitrifiable particulate solids and interstitial gas to form a densified composition comprising the solids by removing a portion of the interstitial gas from the composition. The initial composition is passed from an initial environment having a first pressure through a second environment having a second pressure higher than the first pressure to form a composition being densified. Any fugitive particulate solids escaping from the composition being densified are captured and recombined with the composition being densified to form the densified composition. The densified composition is fed into a feed inlet of a turbulent melting zone of a melter vessel and converted into turbulent molten material using at least one submerged combustion burner in the turbulent melting zone.
    Type: Application
    Filed: July 3, 2012
    Publication date: January 9, 2014
    Inventors: Jeffrey M. Shock, Jonathan McCann
  • Publication number: 20130086951
    Abstract: Submerged combustion systems and methods of use to produce glass. One system includes a submerged combustion melter having a roof, a floor, a wall structure connecting the roof and floor, and an outlet, the melter producing an initial foamy molten glass. One or more non-submerged auxiliary burners are positioned in the roof and/or wall structure and configured to deliver combustion products to impact at least a portion of the bubbles with sufficient force and/or heat to burst at least some of the bubbles and form a reduced foam molten glass.
    Type: Application
    Filed: October 7, 2011
    Publication date: April 11, 2013
    Inventors: Mark William Charbonneau, Aaron Morgan Huber, Jeffrey M. Shock, Harley Allan Borders
  • Publication number: 20130086944
    Abstract: Submerged combustion systems and methods of use to produce foamed glass. One system includes a submerged combustion melter having an outlet, the melter configured to produce an initial foamy molten glass having a density and comprising bubbles filled primarily with combustion product gases. The initial foamy molten glass is deposited directly onto or into a transport apparatus that transports the initial foamy molten glass to a downstream processing apparatus. An intermediate stage may be included between the melter and the transport apparatus. One intermediate stage is a channel that includes gas injectors. Another intermediate stage is a channel that produces an upper flow of a less dense glass and a relatively more dense glass lower flow. The upper flow may be processed into foamed glass products, while the more dense flow may be processed into dense glass products.
    Type: Application
    Filed: October 7, 2011
    Publication date: April 11, 2013
    Inventors: Jeffrey M. Shock, Aaron Morgan Huber, Timothy G. Swales
  • Patent number: 7763558
    Abstract: Provided is a range of glass compositions and glass fiber products made therefrom that show a unique combination of properties for both discontinuous fiber manufacturing and end use service. The glass compositions are particularly useful in high volume, high throughput, economical processes such as rotary spinning.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: July 27, 2010
    Assignee: Johns Manville
    Inventors: Jon Frederick Bauer, Jeffrey M. Shock
  • Publication number: 20080161177
    Abstract: Provided is a range of glass compositions and glass fiber products made therefrom that show a unique combination of properties for both discontinuous fiber manufacturing and end use service. The glass compositions are particularly useful in high volume, high throughput, economical processes such as rotary spinning.
    Type: Application
    Filed: December 27, 2006
    Publication date: July 3, 2008
    Inventors: Jon Frederick Bauer, Jeffrey M. Shock