Patents by Inventor Jeffrey M. Zigman

Jeffrey M. Zigman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10183011
    Abstract: This technology relates generally to compounds and methods for stimulating neurogenesis (e.g., post-natal neurogenesis, including post-natal hippocampal and hypothalamic neurogenesis) and/or protecting neuronal cell from cell death. Various compounds are disclosed herein. In vivo activity tests suggest that these compounds may have therapeutic benefits in neuropsychiatric and/or neurodegenerative diseases such as schizophrenia, major depression, bipolar disorder, normal aging, epilepsy, traumatic brain injury, post-traumatic stress disorder, Parkinson's disease, Alzheimer's disease, Down syndrome, spinocerebellar ataxia, amyotrophic lateral sclerosis, Huntington's disease, stroke, radiation therapy, chronic stress, abuse of a neuro-active drug, retinal degeneration, spinal cord injury, peripheral nerve injury, physiological weight loss associated with various conditions, as well as cognitive decline associated with normal aging, chemotherapy, and the like.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: January 22, 2019
    Assignee: Board of Regents of The University of Texas System
    Inventors: Steven L. McKnight, Andrew A. Pieper, Joseph M. Ready, Jef K. De Brabander, Jeffrey M. Zigman
  • Publication number: 20170157092
    Abstract: This technology relates generally to compounds and methods for stimulating neurogenesis (e.g., post-natal neurogenesis, including post-natal hippocampal and hypothalamic neurogenesis) and/or protecting neuronal cell from cell death. Various compounds are disclosed herein. In vivo activity tests suggest that these compounds may have therapeutic benefits in neuropsychiatric and/or neurodegenerative diseases such as schizophrenia, major depression, bipolar disorder, normal aging, epilepsy, traumatic brain injury, post-traumatic stress disorder, Parkinson's disease, Alzheimer's disease, Down syndrome, spinocerebellar ataxia, amyotrophic lateral sclerosis, Huntington's disease, stroke, radiation therapy, chronic stress, abuse of a neuro-active drug, retinal degeneration, spinal cord injury, peripheral nerve injury, physiological weight loss associated with various conditions, as well as cognitive decline associated with normal aging, chemotherapy, and the like.
    Type: Application
    Filed: February 23, 2017
    Publication date: June 8, 2017
    Inventors: Steven L. McKnight, Andrew A. Pieper, Joseph M. Ready, Jef K. De Brabander, Jeffrey M. Zigman
  • Patent number: 9616048
    Abstract: This technology relates generally to compounds and methods for stimulating neurogenesis (e.g., post-natal neurogenesis, including post-natal hippocampal and hypothalamic neurogenesis) and/or protecting neuronal cell from cell death. Various compounds are disclosed herein. In vivo activity tests suggest that these compounds may have therapeutic benefits in neuropsychiatric and/or neurodegenerative diseases such as schizophrenia, major depression, bipolar disorder, normal aging, epilepsy, traumatic brain injury, post-traumatic stress disorder, Parkinson's disease, Alzheimer's disease, Down syndrome, spinocerebellar ataxia, amyotrophic lateral sclerosis, Huntington's disease, stroke, radiation therapy, chronic stress, abuse of a neuro-active drug, retinal degeneration, spinal cord injury, peripheral nerve injury, physiological weight loss associated with various conditions, as well as cognitive decline associated with normal aging, chemotherapy, and the like.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: April 11, 2017
    Assignee: Board of Regents of The University of Texas System
    Inventors: Steven L. McKnight, Andew A. Pieper, Joseph M. Ready, Jef K. De Brabander, Jeffrey M. Zigman
  • Publication number: 20160206596
    Abstract: This technology relates generally to compounds and methods for stimulating neurogenesis (e.g., post-natal neurogenesis, including post-natal hippocampal and hypothalamic neurogenesis) and/or protecting neuronal cell from cell death. Various compounds are disclosed herein. In vivo activity tests suggest that these compounds may have therapeutic benefits in neuropsychiatric and/or neurodegenerative diseases such as schizophrenia, major depression, bipolar disorder, normal aging, epilepsy, traumatic brain injury, post-traumatic stress disorder, Parkinson's disease, Alzheimer's disease, Down syndrome, spinocerebellar ataxia, amyotrophic lateral sclerosis, Huntington's disease, stroke, radiation therapy, chronic stress, abuse of a neuro-active drug, retinal degeneration, spinal cord injury, peripheral nerve injury, physiological weight loss associated with various conditions, as well as cognitive decline associated with normal aging, chemotherapy, and the like.
    Type: Application
    Filed: October 19, 2015
    Publication date: July 21, 2016
    Inventors: Steven L. McKnight, Andew A. Pieper, Joseph M. Ready, Jef K. De Brabander, Jeffrey M. Zigman
  • Patent number: 9162980
    Abstract: This technology relates generally to compounds and methods for stimulating neurogenesis (e.g., post-natal neurogenesis, including post-natal hippocampal and hypothalamic neurogenesis) and/or protecting neuronal cell from cell death. Various compounds are disclosed herein. In vivo activity tests suggest that these compounds may have therapeutic benefits in neuropsychiatric and/or neurodegenerative diseases such as schizophrenia, major depression, bipolar disorder, normal aging, epilepsy, traumatic brain injury, post-traumatic stress disorder, Parkinson's disease, Alzheimer's disease, Down syndrome, spinocerebellar ataxia, amyotrophic lateral sclerosis, Huntington's disease, stroke, radiation therapy, chronic stress, abuse of a neuro-active drug, retinal degeneration, spinal cord injury, peripheral nerve injury, physiological weight loss associated with various conditions, as well as cognitive decline associated with normal aging, chemotherapy, and the like.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: October 20, 2015
    Assignee: Board of Regents of The University of Texas System
    Inventors: Steven L. McKnight, Andew A. Pieper, Joseph M. Ready, Jef K. De Brabander, Jeffrey M. Zigman
  • Publication number: 20140343018
    Abstract: This technology relates generally to compounds and methods for stimulating neurogenesis (e.g., post-natal neurogenesis, including post-natal hippocampal and hypothalamic neurogenesis) and/or protecting neuronal cell from cell death. Various compounds are disclosed herein. In vivo activity tests suggest that these compounds may have therapeutic benefits in neuropsychiatric and/or neurodegenerative diseases such as schizophrenia, major depression, bipolar disorder, normal aging, epilepsy, traumatic brain injury, post-traumatic stress disorder, Parkinson's disease, Alzheimer's disease, Down syndrome, spinocerebellar ataxia, amyotrophic lateral sclerosis, Huntington's disease, stroke, radiation therapy, chronic stress, abuse of a neuro-active drug, retinal degeneration, spinal cord injury, peripheral nerve injury, physiological weight loss associated with various conditions, as well as cognitive decline associated with normal aging, chemotherapy, and the like.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 20, 2014
    Inventors: Steven L. McKnight, Andew A. Pieper, Joseph M. Ready, Jef K. De Brabander, Jeffrey M. Zigman