Patents by Inventor Jeffrey McKinstry

Jeffrey McKinstry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11537859
    Abstract: Neural inference chips are provided. A neural core of the neural inference chip comprises a vector-matrix multiplier; a vector processor; and an activation unit operatively coupled to the vector processor. The vector-matrix multiplier, vector processor, and/or activation unit is adapted to operate at variable precision.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: December 27, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Andrew S. Cassidy, Rathinakumar Appuswamy, John V. Arthur, Pallab Datta, Steve Esser, Myron D. Flickner, Jeffrey McKinstry, Dharmendra S. Modha, Jun Sawada, Brian Taba
  • Publication number: 20210174176
    Abstract: Neural inference chips are provided. A neural core of the neural inference chip comprises a vector-matrix multiplier; a vector processor; and an activation unit operatively coupled to the vector processor. The vector-matrix multiplier, vector processor, and/or activation unit is adapted to operate at variable precision.
    Type: Application
    Filed: December 6, 2019
    Publication date: June 10, 2021
    Inventors: Andrew S. Cassidy, Rathinakumar Appuswamy, John V. Arthur, Pallab Datta, Steve Esser, Myron D. Flickner, Jeffrey McKinstry, Dharmendra S. Modha, Jun Sawada, Brian Taba
  • Publication number: 20070194727
    Abstract: A mobile brain-based device (BBD) includes a mobile platform with sensors and effects, which is guided by a simulated nervous system that is an analogue of the cerebellar areas of the brain used for predictive motor control to determine interaction with a real-world environment. The simulated nervous system has neural areas including precerebellum nuclei (PN), Purkinje cells (PC), deep cerebellar nuclei (DCN) and an inferior olive (IO) for predicting turn and velocity control of the BBD during movement in a real-world environment. The BBD undergoes training and testing, and the simulated nervous system learns and performs control functions, based on a delayed eligibility trace learning rule.
    Type: Application
    Filed: December 27, 2006
    Publication date: August 23, 2007
    Applicant: Neurosciences Research Foundation, Inc.
    Inventors: Jeffrey McKinstry, Gerald Edelman, Jeffrey Krichmar
  • Publication number: 20050261803
    Abstract: A mobile brain-based device BBD includes a mobile base equipped with sensors and effectors (Neurally Organized Mobile Adaptive Device or NOMAD), which is guided by a simulated nervous system that is an analogue of cortical and sub-cortical areas of the brain required for visual processing, decision-making, reward, and motor responses. These simulated cortical and sub-cortical areas are reentrantly connected and each area contains neuronal units representing both the mean activity level and the relative timing of the activity of groups of neurons. The brain-based device BBD learns to discriminate among multiple objects with shared visual features, and associated “target” objects with innately preferred auditory cues. Globally distributed neuronal circuits that correspond to distinct objects in the visual field of NOMAD 10 are activated. These circuits, which are constrained by a reentrant neuroanatomy and modulated by behavior and synaptic plasticity, result in successful discrimination of objects.
    Type: Application
    Filed: April 13, 2005
    Publication date: November 24, 2005
    Applicant: Neurosciences Research Foundation, Inc.
    Inventors: Anil Seth, Jeffrey McKinstry, Gerald Edelman, Jeffrey Krichmar