Patents by Inventor Jeffrey Michael Levy

Jeffrey Michael Levy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230146608
    Abstract: A radiation detector head assembly includes a detector column. The detector column includes a detector having a first surface and a second surface opposite the first surface. The detector column also includes a first collimator disposed over the first surface of the detector configured for use during imaging scans involving radiation in a first energy range. The detector column further includes a second collimator disposed over the second surface of the detector configured for use during imaging scans involving radiation in a second energy range different from the first energy range.
    Type: Application
    Filed: November 5, 2021
    Publication date: May 11, 2023
    Inventors: Jean-Paul Bouhnik, Jeffrey Michael Levy, Yuval Liberman
  • Patent number: 9891328
    Abstract: A radiation detector processing assembly is provided including at least one application specific integrated circuit (ASIC). The radiation detector processing assembly includes plural input channels, a common readout, and a readout channel. Each input channel is configured to receive an input corresponding to a detection event from a pixel of a pixelated detector. The common readout is operably coupled to the plural input channels, and is configured to receive a corresponding output signal from each input channel. Each corresponding output signal has a unique address identifying the corresponding input channel. The readout channel is configured to receive a corresponding readout output from the common readout. The readout output includes output signals from a corresponding group of input channels.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: February 13, 2018
    Assignee: General Electric Company
    Inventors: Arie Shahar, Avishai Ofan, Jeffrey Michael Levy, Moshe Cohen-Erner, Yaron Glazer
  • Patent number: 9696440
    Abstract: A radiation detector assembly is provided including a semiconductor detector, pixelated anodes, and at least one processor. The pixelated anodes are disposed on a surface of the semiconductor detector, and configured to generate a primary signal responsive to reception of a photon and a secondary signal responsive to an induced charge caused by reception of a photon by at least one adjacent anode. The at least one processor is operably coupled to the pixelated anodes, and configured to define sub-pixels for each pixelated anode; acquire primary signals and secondary signals from the pixelated anodes; determine sub-pixel locations for acquisition events using the primary and secondary signals; generate a sub-pixel energy spectrum for each sub-pixel; apply at least one energy calibration parameter to adjust the sub-pixel energy spectra for each pixelated anode; and, for each pixelated anode, combine the adjusted sub-pixel energy spectra to provide a pixelated anode spectrum.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: July 4, 2017
    Assignee: General Electric Company
    Inventors: Arie Shahar, Mark David Fries, Yaron Glazer, Jeffrey Michael Levy, Avishai Ofan, Rotem Har-Lavan
  • Patent number: 9632186
    Abstract: A radiation detector system is provided including a semiconductor detector, plural pixelated anodes, and at least one processor. The plural pixelated anodes are disposed on a surface of the detector. At least one of the pixelated anodes is configured to generate a collected charge signal corresponding to a charge collected by the pixelated anode and to generate a non-collected charge signal corresponding to a charge collected by an adjacent anode to the pixelated anode. The at least one processor is configured to determine a collected value for the collected charge signal in the pixelated anode; determine a non-collected value for the non-collected charge signal in the pixelated anode corresponding to the charge collected by the adjacent anode; use the non-collected value for the non-collected charge signal to determine a sub-pixel location for the adjacent anode; and use the collected value to count a single event in the pixelated anode.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: April 25, 2017
    Assignee: General Electric Company
    Inventors: Arie Shahar, Avishai Ofan, Jeffrey Michael Levy, Yaron Glazer
  • Publication number: 20170090047
    Abstract: A radiation detector processing assembly is provided including at least one application specific integrated circuit (ASIC). The radiation detector processing assembly includes plural input channels, a common readout, and a readout channel. Each input channel is configured to receive an input corresponding to a detection event from a pixel of a pixelated detector. The common readout is operably coupled to the plural input channels, and is configured to receive a corresponding output signal from each input channel. Each corresponding output signal has a unique address identifying the corresponding input channel. The readout channel is configured to receive a corresponding readout output from the common readout. The readout output includes output signals from a corresponding group of input channels.
    Type: Application
    Filed: September 30, 2015
    Publication date: March 30, 2017
    Inventors: Arie Shahar, Avishai Ofan, Jeffrey Michael Levy, Moshe Cohen-Erner, Yaron Glazer
  • Publication number: 20170016998
    Abstract: A radiation detector system is provided including a semiconductor detector, plural pixelated anodes, and at least one processor. The plural pixelated anodes are disposed on a surface of the detector. At least one of the pixelated anodes is configured to generate a collected charge signal corresponding to a charge collected by the pixelated anode and to generate a non-collected charge signal corresponding to a charge collected by an adjacent anode to the pixelated anode. The at least one processor is configured to determine a collected value for the collected charge signal in the pixelated anode; determine a non-collected value for the non-collected charge signal in the pixelated anode corresponding to the charge collected by the adjacent anode; use the non-collected value for the non-collected charge signal to determine a sub-pixel location for the adjacent anode; and use the collected value to count a single event in the pixelated anode.
    Type: Application
    Filed: September 29, 2016
    Publication date: January 19, 2017
    Inventors: Arie Shahar, Avishai Ofan, Jeffrey Michael Levy, Yaron Glazer
  • Patent number: 9482764
    Abstract: A radiation detector system is provided including a semiconductor detector, plural pixelated anodes, and at least one processor. At least one of the pixelated anodes is configured to generate a collected charge signal corresponding to charge collected by the pixelated anode and to generate a non-collected charge signal corresponding to charge collected by an adjacent anode. The at least one processor includes a tangible and non-transitory memory having stored thereon instructions configured to direct the at least one processor to determine a collected value for the collected charge signal, to determine a non-collected value for the non-collected charge signal, determine a calibrated value for the non-collected charge signal, determine a total charge produced by a charge sharing event using the collected value and the calibrated value, and count the charge sharing event as a single event if the total charge exceeds a predetermined value.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: November 1, 2016
    Assignee: General Electric Company
    Inventors: Arie Shahar, Avishai Ofan, Yaron Glazer, Jeffrey Michael Levy
  • Publication number: 20160245934
    Abstract: A radiation detector assembly is provided including a semiconductor detector, pixelated anodes, and at least one processor. The pixelated anodes are disposed on a surface of the semiconductor detector, and configured to generate a primary signal responsive to reception of a photon and a secondary signal responsive to an induced charge caused by reception of a photon by at least one adjacent anode. The at least one processor is operably coupled to the pixelated anodes, and configured to define sub-pixels for each pixelated anode; acquire primary signals and secondary signals from the pixelated anodes; determine sub-pixel locations for acquisition events using the primary and secondary signals; generate a sub-pixel energy spectrum for each sub-pixel; apply at least one energy calibration parameter to adjust the sub-pixel energy spectra for each pixelated anode; and, for each pixelated anode, combine the adjusted sub-pixel energy spectra to provide a pixelated anode spectrum.
    Type: Application
    Filed: February 20, 2015
    Publication date: August 25, 2016
    Inventors: Arie Shahar, Mark David Fries, Yaron Glazer, Jeffrey Michael Levy, Avishai Ofan, Rotem Har-Lavan