Patents by Inventor Jeffrey Minoru Adachi

Jeffrey Minoru Adachi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11675092
    Abstract: A vehicle, for example, an autonomous vehicle receives signals from a global navigation satellite system (GNSS) and determines accurate location of the vehicle using the GNSS signal. The vehicle performs localization to determine the location of the vehicle as it drives. The autonomous vehicle uses sensor data and a high definition map to determine an accurate location of the autonomous vehicle. The autonomous vehicle uses accurate location of the vehicle to determine RTK corrections that is used for improving GNSS location estimates at a future location. The RTK corrections may be transmitted to other vehicles.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: June 13, 2023
    Assignee: NVIDIA CORPORATION
    Inventor: Jeffrey Minoru Adachi
  • Patent number: 11353589
    Abstract: A system align point clouds obtained by sensors of a vehicle using kinematic iterative closest point with integrated motions estimates. The system receives lidar scans from a lidar mounted on the vehicle. The system derives point clouds from the lidar scan data. The system iteratively determines velocity parameters that minimize an aggregate measure of distance between corresponding points of the plurality of pairs of points. The system iteratively improves the velocity parameters. The system uses the velocity parameters for various purposes including for building high definition maps used for navigating the vehicle.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: June 7, 2022
    Assignee: NVIDIA CORPORATION
    Inventors: Gregory William Coombe, Chen Chen, Derik Schroeter, Jeffrey Minoru Adachi, Mark Damon Wheeler
  • Publication number: 20220065657
    Abstract: A system for generating a map is disclosed herein. The system may comprise a synthetic aperture radar (SAR) unit mountable to a terrestrial vehicle. The system may further comprise one or more computer processors operatively coupled to the SAR unit. The one or more computer processors may be individually or collectively programmed to: (i) while the terrestrial vehicle is in motion, use the SAR unit to (1) transmit a first set of signals to an environment external to the vehicle and (2) collect a second set of signals from the environment; and (ii) use at least the second set of signals to generate the map of the environment in memory.
    Type: Application
    Filed: August 19, 2021
    Publication date: March 3, 2022
    Inventors: Ching Ming Wang, Jeffrey Minoru Adachi
  • Publication number: 20210255337
    Abstract: A vehicle, for example, an autonomous vehicle receives signals from a global navigation satellite system (GNSS) and determines accurate location of the vehicle using the GNSS signal. The vehicle performs localization to determine the location of the vehicle as it drives. The autonomous vehicle uses sensor data and a high definition map to determine an accurate location of the autonomous vehicle. The autonomous vehicle uses accurate location of the vehicle to determine RTK corrections that is used for improving GNSS location estimates at a future location. The RTK corrections may be transmitted to other vehicles.
    Type: Application
    Filed: February 23, 2021
    Publication date: August 19, 2021
    Inventor: Jeffrey Minoru Adachi
  • Patent number: 10928523
    Abstract: A vehicle, for example, an autonomous vehicle receives signals from a global navigation satellite system (GNSS) and determines accurate location of the vehicle using the GNSS signal. The vehicle performs localization to determine the location of the vehicle as it drives. The autonomous vehicle uses sensor data and a high definition map to determine an accurate location of the autonomous vehicle. The autonomous vehicle uses accurate location of the vehicle to determine RTK corrections that is used for improving GNSS location estimates at a future location. The RTK corrections may be transmitted to other vehicles.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: February 23, 2021
    Assignee: DEEPMAP INC.
    Inventor: Jeffrey Minoru Adachi
  • Publication number: 20200233095
    Abstract: A vehicle, for example, an autonomous vehicle receives signals from a global navigation satellite system (GNSS) and determines accurate location of the vehicle using the GNSS signal. The vehicle performs localization to determine the location of the vehicle as it drives. The autonomous vehicle uses sensor data and a high definition map to determine an accurate location of the autonomous vehicle. The autonomous vehicle uses accurate location of the vehicle to determine RTK corrections that is used for improving GNSS location estimates at a future location. The RTK corrections may be transmitted to other vehicles.
    Type: Application
    Filed: January 6, 2020
    Publication date: July 23, 2020
    Inventor: Jeffrey Minoru Adachi
  • Patent number: 10527734
    Abstract: A vehicle, for example, an autonomous vehicle receives signals from a global navigation satellite system (GNSS) and determines accurate location of the vehicle using the GNSS signal. The vehicle performs localization to determine the location of the vehicle as it drives. The autonomous vehicle uses sensor data and a high definition map to determine an accurate location of the autonomous vehicle. The autonomous vehicle uses accurate location of the vehicle to determine RTK corrections that is used for improving GNSS location estimates at a future location. The RTK corrections may be transmitted to other vehicles.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: January 7, 2020
    Assignee: DeepMap Inc.
    Inventor: Jeffrey Minoru Adachi
  • Publication number: 20190219700
    Abstract: A system align point clouds obtained by sensors of a vehicle using kinematic iterative closest point with integrated motions estimates. The system receives lidar scans from a lidar mounted on the vehicle. The system derives point clouds from the lidar scan data. The system iteratively determines velocity parameters that minimize an aggregate measure of distance between corresponding points of the plurality of pairs of points. The system iteratively improves the velocity parameters. The system uses the velocity parameters for various purposes including for building high definition maps used for navigating the vehicle.
    Type: Application
    Filed: November 16, 2018
    Publication date: July 18, 2019
    Inventors: Greg Coombe, Chen Chen, Derik Schroeter, Jeffrey Minoru Adachi, Mark Damon Wheeler
  • Publication number: 20190154842
    Abstract: A vehicle, for example, an autonomous vehicle receives signals from a global navigation satellite system (GNSS) and determines accurate location of the vehicle using the GNSS signal. The vehicle performs localization to determine the location of the vehicle as it drives. The autonomous vehicle uses sensor data and a high definition map to determine an accurate location of the autonomous vehicle. The autonomous vehicle uses accurate location of the vehicle to determine RTK corrections that is used for improving GNSS location estimates at a future location. The RTK corrections may be transmitted to other vehicles.
    Type: Application
    Filed: November 21, 2018
    Publication date: May 23, 2019
    Inventor: Jeffrey Minoru Adachi
  • Patent number: 10222211
    Abstract: A high-definition map system receives sensor data from vehicles travelling along routes and combines the data to generate a high definition map for use in driving vehicles, for example, for guiding autonomous vehicles. A pose graph is built from the collected data, each pose representing location and orientation of a vehicle. The pose graph is optimized to minimize constraints between poses. Points associated with surface are assigned a confidence measure determined using a measure of hardness/softness of the surface. A machine-learning-based result filter detects bad alignment results and prevents them from being entered in the subsequent global pose optimization. The alignment framework is parallelizable for execution using a parallel/distributed architecture. Alignment hot spots are detected for further verification and improvement. The system supports incremental updates, thereby allowing refinements of sub-graphs for incrementally improving the high-definition map for keeping it up to date.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: March 5, 2019
    Assignee: DeepMap Inc.
    Inventors: Chen Chen, Jeffrey Minoru Adachi
  • Publication number: 20180188039
    Abstract: A high-definition map system receives sensor data from vehicles travelling along routes and combines the data to generate a high definition map for use in driving vehicles, for example, for guiding autonomous vehicles. A pose graph is built from the collected data, each pose representing location and orientation of a vehicle. The pose graph is optimized to minimize constraints between poses. Points associated with surface are assigned a confidence measure determined using a measure of hardness/softness of the surface. A machine-learning-based result filter detects bad alignment results and prevents them from being entered in the subsequent global pose optimization. The alignment framework is parallelizable for execution using a parallel/distributed architecture. Alignment hot spots are detected for further verification and improvement.
    Type: Application
    Filed: December 28, 2017
    Publication date: July 5, 2018
    Inventors: Chen Chen, Jeffrey Minoru Adachi
  • Patent number: 8260584
    Abstract: A computer model of a physical structure (or object) can be generated using context-based hypothesis testing. For a set of point data, a user selects a context specifying a geometric category corresponding to the structure shape. The user specifies at least one seed point from the set that lies on a surface of the structure of interest. Using the context and point data, the system loads points in a region near the seed point(s), and determines the dimensions and orientation of an initial surface component in the context that corresponds to those points. If the selected component is supported by the points, that component can be added to a computer model of the surface. The system can repeatedly find points near a possible extension of the surface model, using the context and current surface component(s) to generate hypotheses for extending the surface model to these points.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: September 4, 2012
    Assignee: Leica Geosystems AG
    Inventors: Jeffrey Minoru Adachi, Mark Damon Wheeler, Jonathan Apollo Kung, Richard William Bukowski, Laura Michele Downs
  • Publication number: 20100145666
    Abstract: A computer model of a physical structure (or object) can be generated using context-based hypothesis testing. For a set of point data, a user selects a context specifying a geometric category corresponding to the structure shape. The user specifies at least one seed point from the set that lies on a surface of the structure of interest. Using the context and point data, the system loads points in a region near the seed point(s), and determines the dimensions and orientation of an initial surface component in the context that corresponds to those points. If the selected component is supported by the points, that component can be added to a computer model of the surface. The system can repeatedly find points near a possible extension of the surface model, using the context and current surface component(s) to generate hypotheses for extending the surface model to these points.
    Type: Application
    Filed: January 4, 2010
    Publication date: June 10, 2010
    Applicant: LEICA GEOSYSTEMS AG
    Inventors: Jeffrey Minoru Adachi, Mark Damon Wheeler, Jonathan Apollo Kung, Richard William Bukowski, Laura Michele Downs
  • Patent number: 7643966
    Abstract: A computer model of a physical structure (or object) can be generated using context-based hypothesis testing. For a set of point data, a user selects a context specifying a geometric category corresponding to the structure shape. The user specifies at least one seed point from the set that lies on a surface of the structure of interest. Using the context and point data, the system loads points in a region near the seed point(s), and determines the dimensions and orientation of an initial surface component in the context that corresponds to those points. If the selected component is supported by the points, that component can be added to a computer model of the surface. The system can repeatedly find points near a possible extension of the surface model, using the context and current surface component(s) to generate hypotheses for extending the surface model to these points.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: January 5, 2010
    Assignee: Leica Geosystems AG
    Inventors: Jeffrey Minoru Adachi, Mark Damon Wheeler, Jonathan Apollo Kung, Richard William Bukowski, Laura Michele Downs