Patents by Inventor Jeffrey Oicles

Jeffrey Oicles has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7567607
    Abstract: An oscillator-amplifier gas discharge laser system and method is disclosed which may comprise a first laser unit which may comprise a first discharge region which may contain an excimer or molecular fluorine lasing gas medium; a first pair of electrodes defining the first discharge region containing the lasing gas medium, a line narrowing unit for narrowing a spectral bandwidth of output laser light pulse beam pulses produced in said first discharge region; a second laser unit which may comprise a second discharge chamber which may contain an excimer or molecular fluorine lasing gas medium; a second pair of electrodes defining the second discharge region containing the lasing gas medium; a pulse power system providing electrical pulses to the first pair of electrodes and to the second pair of electrodes producing gas discharges in the lasing gas medium between the respective first and second pair of electrodes, and laser parameter control mechanism modifying a selected parameter of a selected laser output lig
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: July 28, 2009
    Assignee: Cymer, Inc.
    Inventors: David S. Knowles, Daniel J. W. Brown, Herve A. Besaucele, David W. Myers, Alexander I. Ershov, William N. Partlo, Richard L. Sandstrom, Palash P. Das, Stuart L. Anderson, Igor V. Fomenkov, Richard C. Ujazdowski, Eckehard D. Onkels, Richard M. Ness, Scot T. Smith, William G. Hulburd, Jeffrey Oicles
  • Publication number: 20060139977
    Abstract: A high voltage pulse generator utilizes an even number of Marx cells using L-C inversion topology. Each Marx cell is associated with an individual inverter transformer having a primary winding connected to the output of an ac power supply such as a series resonant inverter. The secondary of each inverter transformer is half-wave rectified to charge the energy storage capacitors in each Marx cell. A distributed voltage sensing scheme can be provided for accurate feedback to the inverter's controller. An inductive element can be used to achieve a magnetic diode effect in the L-C inversion circuit to reduce component stress and improve efficiency. A transformer-coupled floating gate drive circuit is used to provide local power conditioning and trigger timing for discharge of the energy storage capacitors.
    Type: Application
    Filed: December 28, 2004
    Publication date: June 29, 2006
    Inventors: Jeffrey Oicles, David Johns
  • Publication number: 20060126697
    Abstract: An oscillator-amplifier gas discharge laser system and method is disclosed which may comprise a first laser unit which may comprise a first discharge region which may contain an excimer or molecular fluorine lasing gas medium; a first pair of electrodes defining the first discharge region containing the lasing gas medium, a line narrowing unit for narrowing a spectral bandwidth of output laser light pulse beam pulses produced in said first discharge region; a second laser unit which may comprise a second discharge chamber which may contain an excimer or molecular fluorine lasing gas medium; a second pair of electrodes defining the second discharge region containing the lasing gas medium; a pulse power system providing electrical pulses to the first pair of electrodes and to the second pair of electrodes producing gas discharges in the lasing gas medium between the respective first and second pair of electrodes, and laser parameter control mechanism modifying a selected parameter of a selected laser output lig
    Type: Application
    Filed: February 1, 2006
    Publication date: June 15, 2006
    Applicant: Cymer, Inc.
    Inventors: David Knowles, Daniel Brown, Herve Besaucele, David Myers, Alexander Ershov, William Partlo, Richard Sandstrom, Palash Das, Stuart Anderson, Igor Fomenkov, Richard Ujazdowski, Eckehard Onkels, Richard Ness, Scott Smith, William Hulburd, Jeffrey Oicles
  • Patent number: 7061961
    Abstract: An oscillator-amplifier gas discharge laser system and method is disclosed which may comprise a first laser unit which may comprise a first discharge region which may contain an excimer or molecular fluorine lasing gas medium; a first pair of electrodes defining the first discharge region containing the lasing gas medium, a line narrowing unit for narrowing a spectral bandwidth of output laser light pulse beam pulses produced in said first discharge region; a second laser unit which may comprise a second discharge chamber which may contain an excimer or molecular fluorine lasing gas medium; a second pair of electrodes defining the second discharge region containing the lasing gas medium; a pulse power system providing electrical pulses to the first pair of electrodes and to the second pair of electrodes producing gas discharges in the lasing gas medium between the respective first and second pair of electrodes, and laser parameter control mechanism modifying a selected parameter of a selected laser output lig
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: June 13, 2006
    Assignee: Cymer, Inc.
    Inventors: David S. Knowles, Daniel J. W. Brown, Herve A. Besaucele, David W. Myers, Alexander I. Ershov, William N. Partlo, Richard L. Sandstrom, Palash P. Das, Stuart L. Anderson, Igor V. Fomenkov, Richard C. Ujazdowski, Eckehard D. Onkels, Richard M. Ness, Scot T. Smith, William G. Hulburd, Jeffrey Oicles
  • Patent number: 6985508
    Abstract: An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in an ArF excimer laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: January 10, 2006
    Assignee: Cymer, Inc.
    Inventors: David S. Knowles, Daniel J. W. Brown, Herve A. Besaucele, David W. Meyers, Alexander I. Ershov, William N. Partlo, Richard L. Sandstrom, Palash P. Das, Stuart L. Anderson, Igor V. Fomenkov, Richard C. Ujazdowski, Eckehard D. Onkels, Richard M. Ness, Scott T. Smith, William G. Hulburd, Jeffrey Oicles
  • Publication number: 20050271109
    Abstract: An oscillator-amplifier gas discharge laser system and method is disclosed which may comprise a first laser unit which may comprise a first discharge region which may contain an excimer or molecular fluorine lasing gas medium; a first pair of electrodes defining the first discharge region containing the lasing gas medium, a line narrowing unit for narrowing a spectral bandwidth of output laser light pulse beam pulses produced in said first discharge region; a second laser unit which may comprise a second discharge chamber which may contain an excimer or molecular fluorine lasing gas medium; a second pair of electrodes defining the second discharge region containing the lasing gas medium; a pulse power system providing electrical pulses to the first pair of electrodes and to the second pair of electrodes producing gas discharges in the lasing gas medium between the respective first and second pair of electrodes, and laser parameter control mechanism modifying a selected parameter of a selected laser output lig
    Type: Application
    Filed: August 9, 2005
    Publication date: December 8, 2005
    Applicant: Cymer, Inc.
    Inventors: David Knowles, Daniel Brown, Herve Besaucele, David Myers, Alexander Ershov, William Partlo, Richard Sandstrom, Palash Das, Stuart Anderson, Igor Fomenkov, Richard Ujazdowski, Eckehard Onkels, Richard Ness, Scot Smith, William Hulburd, Jeffrey Oicles
  • Publication number: 20040047385
    Abstract: An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in an ArF excimer laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses.
    Type: Application
    Filed: July 24, 2003
    Publication date: March 11, 2004
    Inventors: David S. Knowles, Daniel J.W. Brown, Herve A. Besaucele, David W. Myers, Alexander I. Ershov, William N. Partlo, Richard L. Sandstrom, Palash P. Das, Stuart L. Anderson, Igor V. Fomenkov, Richard C. Ujazdowski, Eckehard D. Onkels, Richard M. Ness, Scott T. Smith, William G. Hulburd, Jeffrey Oicles
  • Patent number: 6625191
    Abstract: An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in an ArF excimer laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: September 23, 2003
    Assignee: Cymer, Inc.
    Inventors: David S. Knowles, Daniel J. W. Brown, Herve A. Besaucele, David W. Myers, Alexander I. Ershov, William N. Partlo, Richard L. Sandstrom, Palash P. Das, Stuart L. Anderson, Igor V. Fomenkov, Richard C. Ujazdowski, Eckehard D. Onkels, Richard M. Ness, Scott T. Smith, William G. Hulburd, Jeffrey Oicles
  • Publication number: 20020154668
    Abstract: An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in an ArF excimer laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses.
    Type: Application
    Filed: November 30, 2001
    Publication date: October 24, 2002
    Inventors: David S. Knowles, Daniel J. w. Brown, Herve A. Besaucele, David W. Myers, Alexander I. Ershov, William N. Partlo, Richard L. Sandstrom, Palash P. Das, Stuart L. Anderson, Igor V. Fomenkov, Richard C. Ujazdowski, Eckehard D. Onkels, Richard M. Ness, Scott T. Smith, William G. Hulburd, Jeffrey Oicles
  • Patent number: 4001687
    Abstract: Disclosed is an apparatus for generating a pulse train whose instantaneous repetition rate represents the instantaneous angular velocity of a rotating device.An oscillator feeds a high frequency signal to a coil through which a center pole of magnetic material projects. The rotating device causes an object such as a gear to rotate, at least a portion of the extremity of which (e.g., the tips of its teeth, in the case of a gear) repeatedly comes into close contact with the tip of the center pole, separated only by a small air gap. This results in a change in inductance of the coil, which amplitude modulates the oscillator output. The modulated output is passed through a peak voltage detector which generates the desired pulse train.
    Type: Grant
    Filed: March 10, 1975
    Date of Patent: January 4, 1977
    Assignee: TRW Inc.
    Inventors: Morris Sorkin, Jeffrey A. Oicles
  • Patent number: 3962567
    Abstract: A digital speedometer, frequency or event counter with digital display. The speedometer conventionally receives speed pulses representative of the speed of the vehicle. Due to the lack of synchronization between speed pulses and clock pulses the last display digit exhibits undesirable jitter. This may also be caused by backlash in the drive train or the like. This jitter is minimized by the provision of a precounter between the counter and the gate transfer to a storage register. This will permit transfer of the number generated in the counter only if the precounter is in the zero state, thus minimizing the jitter due to random occurrences of the last pulse.
    Type: Grant
    Filed: January 13, 1975
    Date of Patent: June 8, 1976
    Assignee: TRW Inc.
    Inventors: Jeffrey A. Oicles, Thomas F. Martin