Patents by Inventor Jeffrey P. Maranchi

Jeffrey P. Maranchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240047206
    Abstract: A method for printing a semiconductor material includes depositing a molten metal onto a substrate in an enclosed chamber to form a trace having a maximum height of 15 micrometers and/or a maximum width of 25 micrometers to 10 millimeters and/or a thin film having a maximum height of 15 micrometers. The method further includes reacting the molten metal with a gas phase species in the enclosed chamber to form the semiconductor material. The depositing the molten metal includes depositing a metal composition including the molten metal and an etchant or depositing the etchant separate from the molten metal in the enclosed chamber.
    Type: Application
    Filed: September 15, 2023
    Publication date: February 8, 2024
    Inventors: Jarod C. Gagnon, Michael J. Presley, Steven M. Storck, Jeffrey P. Maranchi
  • Patent number: 11823900
    Abstract: A method for printing a semiconductor material includes depositing a molten metal onto a substrate in an enclosed chamber to form a trace having a maximum height of 15 micrometers and/or a maximum width of 25 micrometers to 10 millimeters and/or a thin film having a maximum height of 15 micrometers. The method further includes reacting the molten metal with a gas phase species in the enclosed chamber to form the semiconductor material. The depositing the molten metal includes depositing a metal composition including the molten metal and an etchant or depositing the etchant separate from the molten metal in the enclosed chamber.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: November 21, 2023
    Assignee: The Johns Hopkins University
    Inventors: Jarod C. Gagnon, Michael J. Presley, Steven M. Storck, Jeffrey P. Maranchi, Korine A. Ohiri, Scott A. Shuler
  • Patent number: 11522128
    Abstract: A metasurface unit cell for use in constructing a metasurface array is provided. The unit cell may include a ground plane layer comprising a first conductive material, and a phase change material layer operably coupled to the ground plane layer. The phase change material layer may include a phase change material configured to transition between an amorphous phase and a crystalline phase in response to a stimulus. The unit cell may further include a patterned element disposed adjacent to the phase change material layer and includes a second conductive material. In response to the phase change material transitioning from a first phase to a second phase, the metasurface unit cell may resonate to generate an electromagnetic signal having a defined wavelength. The first phase may be the amorphous phase or the crystalline phase and the second phase may be the other of the amorphous phase or the crystalline phase.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: December 6, 2022
    Assignee: The Johns Hopkins University
    Inventors: David B. Shrekenhamer, Jeffrey P. Maranchi, Joseph A. Miragliotta, Keith S. Caruso
  • Publication number: 20220285571
    Abstract: Systems, apparatuses, and methods are provided for manufacturing nano-engineered thin-film thermoelectric (NETT) devices for photovoltaic applications, such as NETT converters that harness the coldness of space for satellite applications or for integration with terrestrial PV. An example method can include mounting a thin-film thermoelectric device to a photovoltaic device. The example method can further include mounting a heat sink device to the thin-film thermoelectric device. The example method can further include mounting a radiator device or heat exchanger device to the heat sink device.
    Type: Application
    Filed: March 4, 2022
    Publication date: September 8, 2022
    Inventors: Rama Venkatasubramanian, Meiyong Himmtann, Priyadharshini Gajendiran, Jonathan M. Pierce, Nathan J. Fairbanks, Richard J. Ung, Jacob L. Ballard, Jeffrey P. Maranchi
  • Publication number: 20210296124
    Abstract: A method for printing a semiconductor material includes depositing a molten metal onto a substrate in an enclosed chamber to form a trace having a maximum height of 15 micrometers and/or a maximum width of 25 micrometers to 10 millimeters and/or a thin film having a maximum height of 15 micrometers. The method further includes reacting the molten metal with a gas phase species in the enclosed chamber to form the semiconductor material. The depositing the molten metal includes depositing a metal composition including the molten metal and an etchant or depositing the etchant separate from the molten metal in the enclosed chamber.
    Type: Application
    Filed: June 4, 2021
    Publication date: September 23, 2021
    Inventors: Jarod C. Gagnon, Michael J. Presley, Steven M. Storck, Jeffrey P. Maranchi, Korine A. Ohiri, Scott A. Shuler
  • Publication number: 20200274245
    Abstract: A metasurface unit cell for use in constructing a metasurface array is provided. The unit cell may include a ground plane layer comprising a first conductive material, and a phase change material layer operably coupled to the ground plane layer. The phase change material layer may include a phase change material configured to transition between an amorphous phase and a crystalline phase in response to a stimulus. The unit cell may further include a patterned element disposed adjacent to the phase change material layer and includes a second conductive material. In response to the phase change material transitioning from a first phase to a second phase, the metasurface unit cell may resonate to generate an electromagnetic signal having a defined wavelength. The first phase may be the amorphous phase or the crystalline phase and the second phase may be the other of the amorphous phase or the crystalline phase.
    Type: Application
    Filed: March 1, 2019
    Publication date: August 27, 2020
    Inventors: David B. Shrekenhamer, Jeffrey P. Maranchi, Joseph A. Miragliotta, Keith S. Caruso
  • Patent number: 10381635
    Abstract: A method of preparing a high capacity nanocomposite cathode of FeF3 in carbon pores may include preparing a nanoporous carbon precursor, employing electrochemistry or solution chemistry deposition to deposit Fe particles in the carbon pores, reacting nano Fe with liquid hydrofluoric acid to form nano FeF3 in carbon, and milling to achieve a desired particle size.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: August 13, 2019
    Assignee: The Johns Hopkins University
    Inventors: Jeremy D. Walker, Jeffrey P. Maranchi, Edward D. Russell, Jennifer L. Sample, Marcia W. Patchan, Lance M. Baird, Rengaswamy Srinivasan
  • Publication number: 20170271647
    Abstract: A method of preparing a high capacity nanocomposite cathode of FeF3 in carbon pores may include preparing a nanoporous carbon precursor, employing electrochemistry or solution chemistry deposition to deposit Fe particles in the carbon pores, reacting nano Fe with liquid hydrofluoric acid to form nano FeF3 in carbon, and milling to achieve a desired particle size.
    Type: Application
    Filed: June 7, 2017
    Publication date: September 21, 2017
    Inventors: Jeremy D. Walker, Jeffrey P. Maranchi, Edward D. Russell, Jennifer L. Sample, Marcia W. Patchan, Lance M. Baird, Rengaswamy Srinivasan
  • Patent number: 9705124
    Abstract: A method of preparing a high capacity nanocomposite cathode of FeF3 in carbon pores may include preparing a nanoporous carbon precursor, employing electrochemistry or solution chemistry deposition to deposit Fe particles in the carbon pores, reacting nano Fe with liquid hydrofluoric acid to form nano FeF3 in carbon, and milling to achieve a desired particle size.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: July 11, 2017
    Assignee: The Johns Hopkins University
    Inventors: Jeremy D. Walker, Jeffrey P. Maranchi, Edward D. Russell, Jennifer L. Sample, Marcia W. Patchan, Lance M. Baird, Rengaswamy Srinivasan
  • Patent number: 9550855
    Abstract: A metallic microcapsule containing a polymeric microcapsule having one or more polymeric precursors encapsulated therein; and a metallic shell enclosing a volume containing the polymeric microcapsule is disclosed. Also disclosed is a self-healing coating composition comprising (a) a film-forming binder; and (b) metallic microcapsules, the metallic microcapsules being the same or different and containing a polymeric microcapsule containing one or more polymeric precursors encapsulated therein; and a metallic shell enclosing a volume containing the polymeric microcapsule.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: January 24, 2017
    Assignee: The Johns Hopkins University
    Inventors: Jason J. Benkoski, Rengaswamy Srinivasan, Jeffrey P. Maranchi
  • Patent number: 9441080
    Abstract: The present invention provides cellulose hydrogels having one or more of the following properties: high water content, high transparency, high oxygen permeability, high biocompatibility, high tensile strength and desirable thermal stability. The present invention further provides a process for preparing a cellulose hydrogel comprising (i) a step of activating cellulose, in which the activating step comprises contacting the cellulose with a solvent to activate the cellulose for a time duration from about 2 hours to about 30 hours; (ii) substantially dissolving the activated cellulose to form a solution; and (iii) gelling the solution to form a gel, in which the gelling step comprises allowing the solution to gel in an environment comprising a relative humidity from about 30% to about 80% at 35° C.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: September 13, 2016
    Assignee: The Johns Hopkins University
    Inventors: Morgana M. Trexler, Jeffrey P. Maranchi, Jennifer L. Breidenich, Xiomara Calderon-Colon, Julia B. Patrone, Jennifer H. Elisseeff, Marcia W. Patchan, Jenna L. Graham, Oliver D. Schein
  • Patent number: 9314531
    Abstract: The present invention provides a wound healing composition comprising a biocompatible hydrogel membrane wherein the hydrogel membrane has one or more of the following properties: high water content, high transparency, high permeability, high biocompatibility, high tensile strength and an optimal thickness. The invention further provides methods of treating a wound in a subject in need thereof, comprising contacting the wound with a biocompatible cellulose hydrogel membrane of the invention.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: April 19, 2016
    Assignee: The Johns Hopkins University
    Inventors: Morgana M. Trexler, Jennifer H. Elisseeff, Daniel Mulreany, Qiongyu Guo, Jennifer L. Breidenich, Jeffrey P. Maranchi, Jenna L. Graham, Julia B. Patrone, Marcia W. Patchan, Xiomara Calderon-Colon
  • Publication number: 20160074520
    Abstract: The present invention provides a wound healing composition comprising a biocompatible hydrogel membrane wherein the hydrogel membrane has one or more of the following properties: high water content, high transparency, high permeability, high biocompatibility, high tensile strength and an optimal thickness. The invention further provides methods of treating a wound in a subject in need thereof, comprising contacting the wound with a biocompatible cellulose hydrogel membrane of the invention.
    Type: Application
    Filed: October 28, 2015
    Publication date: March 17, 2016
    Inventors: Morgana M. Trexler, Jennifer H. Elisseeff, Daniel Mulreany, Qiongyu Guo, Jennifer L. Breidenich, Jeffrey P. Maranchi, Jenna L. Graham, Julia B. Patrone, Marcia W. Patchan, Xiomara Calderon-Colon
  • Patent number: 9281537
    Abstract: A thin film electrode is fabricated from a non-metallic, non-conductive porous support structure having pores with micrometer-range diameters. The support may include a polymer film. A first surface of the support is metalized, and the pores are partially metallized to create metal tubes having a thickness within a range of 50 to 150 nanometers, in contact with the metal layer. An active material is disposed within metalized portions of the pores. An electrolyte is disposed within non-metalized portions of the pores. Active materials may be selected to create an anode and a cathode. Non-metalized surfaces of the anode and cathode may be contacted to one another to form a battery cell, with the non-metalized electrolyte-containing portions of the anode facing the electrolyte-containing portions of the cathode pores. A battery cell may be fabricated as, for example, a nickel-zinc battery cell.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: March 8, 2016
    Assignee: The Johns Hopkins University
    Inventors: Rengaswamy Srinivasan, Jeffrey P. Maranchi, Lance M. Baird, Ryan M. Deacon, Arthur S. Francomacaro, Paul J. Biermann, Craig B. Leese, Gary E. Peck
  • Publication number: 20150368408
    Abstract: The present invention provides cellulose hydrogels having one or more of the following properties: high water content, high transparency, high oxygen permeability, high biocompatibility, high tensile strength and desirable thermal stability. The present invention further provides a process for preparing a cellulose hydrogel comprising (i) a step of activating cellulose, in which the activating step comprises contacting the cellulose with a solvent to activate the cellulose for a time duration from about 2 hours to about 30 hours; (ii) substantially dissolving the activated cellulose to form a solution; and (iii) gelling the solution to form a gel, in which the gelling step comprises allowing the solution to gel in an environment comprising a relative humidity from about 30% to about 80% at 35° C.
    Type: Application
    Filed: August 17, 2015
    Publication date: December 24, 2015
    Inventors: Morgana M. Trexler, Jeffrey P. Maranchi, Jennifer L. Breidenich, Xiomara Calderon-Colon, Julia B. Patrone, Jennifer H. Elisseeff, Marcia W. Patchan, Jenna L. Graham, Oliver D. Schein
  • Patent number: 9211256
    Abstract: The present invention provides a wound healing composition comprising a biocompatible hydrogel membrane wherein the hydrogel membrane has one or more of the following properties: high water content, high transparency, high permeability, high biocompatibility, high tensile strength and an optimal thickness. The invention further provides methods of treating a wound in a subject in need thereof, comprising contacting the wound with a biocompatible cellulose hydrogel membrane of the invention.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: December 15, 2015
    Assignee: The Johns Hopkins University
    Inventors: Morgana M. Trexler, Jenna L. Graham, Jennifer L. Breidenich, Jeffrey P. Maranchi, Julia B. Patrone, Marcia W. Patchan, Jennifer H. Elisseeff, Xiomara Calderon-Colon, Daniel Mulreany, Qiongyu Guo
  • Patent number: 9175153
    Abstract: The present invention provides cellulose hydrogels having one or more of the following properties: high water content, high transparency, high oxygen permeability, high biocompatibility, high tensile strength and desirable thermal stability. The present invention further provides a process for preparing a cellulose hydrogel comprising (i) a step of activating cellulose, in which the activating step comprises contacting the cellulose with a solvent to activate the cellulose for a time duration from about 2 hours to about 30 hours; (ii) substantially dissolving the activated cellulose to form a solution; and (iii) gelling the solution to form a gel, in which the gelling step comprises allowing the solution to gel in an environment comprising a relative humidity from about 30% to about 80% at 35° C.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: November 3, 2015
    Assignee: The Johns Hopkins University
    Inventors: Morgana M. Trexler, Jenna L. Graham, Jennifer L. Breidenich, Jeffrey P. Maranchi, Julia B. Patrone, Marcia W. Patchan, Jennifer H. Elisseeff, Xiomara Calderon-Colon
  • Publication number: 20150044446
    Abstract: The present invention provides cellulose hydrogels having one or more of the following properties: high water content, high transparency, high oxygen permeability, high biocompatibility, high tensile strength and desirable thermal stability. The present invention further provides a process for preparing a cellulose hydrogel comprising (i) a step of activating cellulose, in which the activating step comprises contacting the cellulose with a solvent to activate the cellulose for a time duration from about 2 hours to about 30 hours; (ii) substantially dissolving the activated cellulose to form a solution; and (iii) gelling the solution to form a gel, in which the gelling step comprises allowing the solution to gel in an environment comprising a relative humidity from about 30% to about 80% at 35° C.
    Type: Application
    Filed: September 11, 2014
    Publication date: February 12, 2015
    Inventors: Morgana M. Trexler, Jenna L. Graham, Jennifer L. Breidenich, Jeffrey P. Maranchi, Julia B. Patrone, Marcia W. Patchan, Jennifer H. Elisseeff, Xiomara Calderon-Colon
  • Patent number: 8871016
    Abstract: The present invention provides cellulose hydrogels having one or more of the following properties: high water content, high transparency, high permeability, high biocompatibility, high tensile strength and an optimal thickness. The present invention further provides a process for preparing a cellulose hydrogel comprising: (i) contacting cellulose with a solvent to activate the cellulose; (ii) optionally removing the solvent from the activated cellulose; (iii) substantially dissolving the activated cellulose to form a solution; (iv) allowing the solution to gel; and optionally (v) drying the gel and rehydrating the gel. The cellulose hydrogel can have many uses, including uses as contact lenses.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: October 28, 2014
    Assignee: The Johns Hopkins University
    Inventors: Morgana M. Trexler, Jenna L. Graham, Jennifer L. Breidenich, Jeffrey P. Maranchi, Julia B. Patrone, Marcia W. Patchan, Jennifer H. Elisseeff, Xiomara Calderon-Colon
  • Publication number: 20130312255
    Abstract: A thin film electrode is fabricated from a non-metallic, non-conductive porous support structure having pores with micrometer-range diameters. The support may include a polymer film. A first surface of the support is metalized, and the pores are partially metallized to create metal tubes having a thickness within a range of 50 to 150 nanometers, in contact with the metal layer. An active material is disposed within metalized portions of the pores. An electrolyte is disposed within non-metalized portions of the pores. Active materials may be selected to create an anode and a cathode. Non-metalized surfaces of the anode and cathode may be contacted to one another to form a battery cell, with the non-metalized electrolyte-containing portions of the anode facing the electrolyte-containing portions of the cathode pores. A battery cell may be fabricated as, for example, a nickel-zinc battery cell.
    Type: Application
    Filed: July 22, 2013
    Publication date: November 28, 2013
    Applicant: Johns Hopkins Univesity
    Inventors: Rengaswamy Srinivasan, Jeffrey P. Maranchi, Lance M. Baird, Ryan M. Deacon, Arthur S. Francomacaro, Paul J. Biermann, Craig B. Leese, Gary E. Peck