Patents by Inventor Jeffrey P. Wuttke

Jeffrey P. Wuttke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220235725
    Abstract: A cylinder head assembly for an internal combustion engine is provided. In one example implementation, the cylinder head assembly includes a cylinder head, a bypass passage formed within the cylinder head and defining a catalyst cavity, and a bypass catalytic converter disposed within the catalyst cavity, where the bypass catalytic converter is configured to provide emissions reduction during cold start, long idle, and/or low main catalytic converter temperature conditions.
    Type: Application
    Filed: January 26, 2021
    Publication date: July 28, 2022
    Inventors: Jeff Brand, Ryan M. Sturgeon, Brett Schubring, Jeffrey P. Wuttke
  • Publication number: 20190323405
    Abstract: An exhaust treatment system configured to treat exhaust gas produced by an engine of a vehicle and its method of operation involve providing a gasoline particulate filter (GPF) configured to trap particulate matter (PM) in the exhaust gas and a utilizing a controller configured to determine a modeled PM load level on the GPF and, based on the modeled PM load level of the GPF, control operation of the engine to maintain at least a minimum PM load level on the GPF, wherein the minimum PM load level is greater than zero and corresponds to an optimized efficiency of the GPF.
    Type: Application
    Filed: June 21, 2018
    Publication date: October 24, 2019
    Inventors: Brett Schubring, Brian E. Hallgren, Luis J. Del Rio, Jeffrey P. Wuttke, Jordan E. Easter
  • Patent number: 10247116
    Abstract: An evaporative emissions (EVAP) control system for a vehicle includes a purge pump configured to pump fuel vapor to an engine of the vehicle via a vapor line and a purge valve. The system includes a hydrocarbon (HC) sensor disposed in the vapor line and configured to measure an amount of HC in the fuel vapor pumped by the purge pump to the engine via the vapor line. A controller is configured to: detect an imminent cold start of the engine and, in response to the detecting, perform the cold start of the engine by controlling at least one of the purge pump and the purge valve, based on the measured amount of HC, to deliver a desired amount of fuel vapor to the engine, which decreases HC emissions by the engine.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: April 2, 2019
    Assignee: FCA US LLC
    Inventors: Joseph Dekar, Roger C Sager, James J Daley, William B Blomquist, Jeffrey P Wuttke, Russell J Wakeman, Adam Fleischman, Ronald A Yannone, Jr., Luis Del Rio, Mark L Lott, Edward Baker, Michael T Vincent, Wei-Jun Yang, Aikaterini Tsahalou
  • Patent number: 10161323
    Abstract: A vapor canister of an evaporative emissions (EVAP) system is configured to store fuel vapor evaporated from a liquid fuel housed in a fuel tank of a vehicle. A boost line is connected between a high-pressure side of a boost system of an engine and the vapor canister, a boost pressure control valve is disposed in-line along the boost line and configured to control an amount of boost pressure provided to the vapor canister, and a set of purge lines are connected between the vapor canister and at least one of the engine, an induction system of the engine, and an exhaust treatment system of the engine. A controller is configured to control the boost pressure control valve to control the boost pressure provided to the vapor canister to control an amount of fuel vapor forced from the vapor canister through at least one of the set of purge lines.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: December 25, 2018
    Assignee: FCA US LLC
    Inventors: Roger C Sager, Ryan Sturgeon, James Daley, Joseph Dekar, Jospeh B Unsworth, Luis Del Rio, Ronald A Yannone, Jr., Jeffrey P Wuttke
  • Publication number: 20180142631
    Abstract: A vapor canister of an evaporative emissions (EVAP) system is configured to store fuel vapor evaporated from a liquid fuel housed in a fuel tank of a vehicle. A boost line is connected between a high-pressure side of a boost system of an engine and the vapor canister, a boost pressure control valve is disposed in-line along the boost line and configured to control an amount of boost pressure provided to the vapor canister, and a set of purge lines are connected between the vapor canister and at least one of the engine, an induction system of the engine, and an exhaust treatment system of the engine. A controller is configured to control the boost pressure control valve to control the boost pressure provided to the vapor canister to control an amount of fuel vapor forced from the vapor canister through at least one of the set of purge lines.
    Type: Application
    Filed: November 23, 2016
    Publication date: May 24, 2018
    Inventors: Roger C. Sager, Ryan Sturgeon, James Daley, Joseph Dekar, Jospeh B. Unsworth, Luis Del Rio, Ronald A Yannone, JR., Jeffrey P Wuttke
  • Patent number: 9879623
    Abstract: An evaporative emissions (EVAP) control system for a vehicle includes a purge pump configured to pump fuel vapor trapped in a vapor canister to an engine of the vehicle via a vapor line when engine vacuum is less than an appropriate level for delivering fuel vapor to the engine, the fuel vapor resulting from evaporation of a liquid fuel stored in a fuel tank of the engine. The EVAP control system includes a hydrocarbon (HC) sensor disposed in the vapor line and configured to measure an amount of HC in the fuel vapor pumped by the purge pump to the engine via the vapor line. The EVAP control system also includes a controller configured to, based on the measured amount of MC, control at least one of the purge pump and a purge valve to deliver a desired amount of fuel vapor to the engine.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: January 30, 2018
    Assignee: FCA US LLC
    Inventors: Joseph Dekar, Roger C Sager, James J Daley, William B Blomquist, Jeffrey P Wuttke, Russell J Wakeman, Adam Fleischman, Ronald A Yannone, Jr., Luis Del Rio, Mark L Lott, Edward Baker, Michael T Vincent, Wei-Jun Yang, Aikaterini Tsahalou
  • Publication number: 20170342917
    Abstract: An evaporative emissions (EVAP) control system for a vehicle includes a purge pump configured to pump fuel vapor to an engine of the vehicle via a vapor line and a purge valve. The system includes a hydrocarbon (HC) sensor disposed in the vapor line and configured to measure an amount of HC in the fuel vapor pumped by the purge pump to the engine via the vapor line. A controller is configured to: detect an imminent cold start of the engine and, in response to the detecting, perform the cold start of the engine by controlling at least one of the purge pump and the purge valve, based on the measured amount of HC, to deliver a desired amount of fuel vapor to the engine, which decreases HC emissions by the engine.
    Type: Application
    Filed: May 25, 2016
    Publication date: November 30, 2017
    Inventors: Joseph Dekar, Roger C Sager, James J Daley, William B Blomquist, Jeffrey P Wuttke, Russell J Wakeman, Adam Fleischman, Ronald A Yannone, Jr., Luis Del Rio, Mark L Lott, Edward Baker, Michael T Vincent, Wei-Jun Yang, Aikaterini Tsahalou
  • Publication number: 20170342918
    Abstract: An evaporative emissions (EVAP) control system for a vehicle includes a purge pump configured to pump fuel vapor to a direct injection (DI) engine of the vehicle via a vapor line and a purge valve and a hydrocarbon (HC) sensor disposed configured to measure an amount of HC in the fuel vapor. The system also includes a controller configured to detect an HC vapor supply condition indicative of an operating condition of the Di engine where engine vacuum is less than an appropriate level for delivering the fuel vapor to the DI engine via the vapor line; and in response to detecting the HC vapor supply condition, controlling at least one of the purge pump and the purge valve, based on the measured amount of HC, to deliver a desired amount of fuel vapor to the DI engine to decrease particulate matter (PM) produced by the DI engine.
    Type: Application
    Filed: May 25, 2016
    Publication date: November 30, 2017
    Inventors: Roger C Sager, Jeffrey P Wuttke, Brett Schubring, Joseph M Dekar, James J Daley, Gregg T Black
  • Publication number: 20170342919
    Abstract: An evaporative emissions (EVAP) control system for a vehicle includes a purge pump configured to pump fuel vapor trapped in a vapor canister to an engine of the vehicle via a vapor line when engine vacuum is less than an appropriate level for delivering fuel vapor to the engine, the fuel vapor resulting from evaporation of a liquid fuel stored in a fuel tank of the engine. The EVAP control system includes a hydrocarbon (HC) sensor disposed in the vapor line and configured to measure an amount of HC in the fuel vapor pumped by the purge pump to the engine via the vapor line. The EVAP control system also includes a controller configured to, based on the measured amount of HC, control at least one of the purge pump and a purge valve to deliver a desired amount of fuel vapor to the engine.
    Type: Application
    Filed: May 25, 2016
    Publication date: November 30, 2017
    Inventors: Joseph Dekar, Roger C. Sager, James J. Daley, William B. Blomquist, Jeffrey P. Wuttke, Russell J. Wakeman, Adam Fleischman, Ronald A. Yannone, JR., Luis Del Rio, Mark L. Lott, Edward Baker, Michael T. Vincent, Wei-Jun Yang, Aikaterini Tsahalou
  • Patent number: 9765666
    Abstract: A system and method for utilizing fuel as an on-board reductant for selective catalytic reduction of NOx is provided and includes a controller for controlling an engine to produce a lean first exhaust stream and a rich second exhaust stream that are received in respective first and second passageways of a dual path aftertreatment system. The rich second exhaust stream reacts with NOx stored in a NOx storage and reduction catalyst of the second passageway to regenerate this catalyst and generate ammonia. The first exhaust stream and the second exhaust stream having the generated ammonia are combined in a downstream common passageway to form a combined lean exhaust gas stream where the ammonia carried therein is stored or used by an SCR catalyst of the common passageway for NOx reduction. The engine is subsequently controlled to produce a rich first exhaust stream and a lean second exhaust stream.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: September 19, 2017
    Assignee: FCA US LLC
    Inventors: Michael A Smith, Craig L Dimaggio, Jeffrey P Wuttke, Andrew Brocker, Travis T Hamilton, Ken Hardman, Cody Baldwin-Squib
  • Patent number: 9739761
    Abstract: A diagnostic system and method for diagnosing the performance of a particulate matter (PM) filter of an exhaust system each involve receiving, by a controller from at least one sensor, a gas component measurement of exhaust gas flowing through the exhaust system and the PM filter. The controller calculates a conversion efficiency of the gas component by the PM filter and compares the calculated conversion efficiency to a predetermined conversion efficiency threshold indicative of an expected conversion efficiency of a flow-through catalyst. The controller then determines whether the PM filter is cracked or damaged based on the comparison between the calculated conversion efficiency and the predetermined conversion efficiency threshold.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: August 22, 2017
    Assignee: FCA US LLC
    Inventors: Michael A Smith, Kiran Premchand, Homayoun Ahari, Jeffrey P Wuttke, Brett Schubring, Craig L Dimaggio, Michael G Zammit, Michael T Vincent
  • Publication number: 20160230632
    Abstract: A system and method for utilizing fuel as an on-board reductant for selective catalytic reduction of NOx is provided and includes a controller for controlling an engine to produce a lean first exhaust stream and a rich second exhaust stream that are received in respective first and second passageways of a dual path aftertreatment system. The rich second exhaust stream reacts with NOx stored in a NOx storage and reduction catalyst of the second passageway to regenerate this catalyst and generate ammonia. The first exhaust stream and the second exhaust stream having the generated ammonia are combined in a downstream common passageway to form a combined lean exhaust gas stream where the ammonia carried therein is stored or used by an SCR catalyst of the common passageway for NOx reduction. The engine is subsequently controlled to produce a rich first exhaust stream and a lean second exhaust stream.
    Type: Application
    Filed: February 9, 2016
    Publication date: August 11, 2016
    Inventors: Michael A. Smith, Craig L. Dimaggio, Jeffrey P. Wuttke, Andrew Brocker, Travis T. Hamilton, Ken Hardman, Cody Baldwin-Squib
  • Publication number: 20160169784
    Abstract: A diagnostic system and method for diagnosing the performance of a particulate matter (PM) filter of an exhaust system each involve receiving, by a controller from at least one sensor, a gas component measurement of exhaust gas flowing through the exhaust system and the PM filter. The controller calculates a conversion efficiency of the gas component by the PM filter and compares the calculated conversion efficiency to a predetermined conversion efficiency threshold indicative of an expected conversion efficiency of a flow-through catalyst. The controller then determines whether the PM filter is cracked or damaged based on the comparison between the calculated conversion efficiency and the predetermined conversion efficiency threshold.
    Type: Application
    Filed: December 11, 2014
    Publication date: June 16, 2016
    Inventors: Michael A. Smith, Kiran Premchand, Homayoun Ahari, Jeffrey P. Wuttke, Brett Schubring, Craig L. Dimaggio, Michael G. Zammit, Michael T. Vincent
  • Patent number: 8925300
    Abstract: A catalyst degradation detection method for use with a zero ceria catalyst. The method uses techniques to measure transient responses to engine control events of upstream and downstream sensors to determine catalyst degradation and performance. By measuring transient behavior, the method can determine catalyst degradation and performance based on the limited oxygen storage of precious metal catalysts that do not include added ceria or other materials with high oxygen capture rates.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: January 6, 2015
    Assignee: Chrysler Group LLC
    Inventors: James J Daley, Robert J Jerger, Wei-Jun Yang, Jeffrey P Wuttke, Michael G Zammit, Andrew Brocker
  • Publication number: 20140165537
    Abstract: A catalyst degradation detection method for use with a zero ceria catalyst. The method uses techniques to measure transient responses to engine control events of upstream and downstream sensors to determine catalyst degradation and performance. By measuring transient behavior, the method can determine catalyst degradation and performance based on the limited oxygen storage of precious metal catalysts that do not include added ceria or other materials with high oxygen capture rates.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 19, 2014
    Inventors: James J. Daley, Robert J. Jerger, Wei-Jun Yang, Jeffrey P. Wuttke, Michael G. Zammit, Andrew Brocker
  • Patent number: 7658178
    Abstract: Ignition timing for a combustion engine may be controlled by determining the roughness of current engine operation, comparing the determined roughness with a control roughness to determine if the determined roughness is within a threshold limit of the control roughness, and changing the ignition timing in a subsequent fuel delivery event as a function of the difference between the determined roughness and the control roughness. Preferably, the ignition timing is changed at least when the determined roughness is not within the threshold limit, although other factors may be taken into account when changing the ignition timing.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: February 9, 2010
    Assignee: Chrysler Group LLC
    Inventors: Kenneth P. DeGroot, Jeffrey P. Wuttke, Gerald Lee Kennie, Dennis W. Fett
  • Publication number: 20080302331
    Abstract: Ignition timing for a combustion engine may be controlled by determining the roughness of current engine operation, comparing the determined roughness with a control roughness to determine if the determined roughness is within a threshold limit of the control roughness, and changing the ignition timing in a subsequent fuel delivery event as a function of the difference between the determined roughness and the control roughness. Preferably, the ignition timing is changed at least when the determined roughness is not within the threshold limit, although other factors may be taken into account when changing the ignition timing.
    Type: Application
    Filed: June 7, 2007
    Publication date: December 11, 2008
    Inventors: Kenneth P. DeGroot, Jeffrey P. Wuttke, Gerald Lee Kennie, Dennis W. Fett
  • Publication number: 20080017168
    Abstract: Fuel delivery to a combustion engine may be controlled by determining the roughness of current engine operation, comparing the determined roughness with a control roughness to determine if the determined roughness is within a threshold limit of the control roughness, and changing the fuel delivery to the engine in a subsequent fuel delivery event as a function of the difference between the determined roughness and the control roughness. Preferably, the fuel delivery is changed at least when the determined roughness is not within the threshold limit, although other factors may be taken into account when changing the fuel delivery to the engine.
    Type: Application
    Filed: July 20, 2006
    Publication date: January 24, 2008
    Inventors: Kenneth P DeGroot, Jeffrey P. Wuttke, Dennis W. Fett, Gerald L. Kennie