Patents by Inventor Jeffrey R. Bailey

Jeffrey R. Bailey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11536128
    Abstract: The present disclosure relates generally to the field of drilling operations. More particularly, the present disclosure relates to methods for drilling wells utilizing drilling equipment, more particularly drill string assemblies, and making adjustments to drilling parameters during the drilling operation based on analysis of the drilling data. Included are methods for the selection of modified drilling parameters to mitigate torsional vibration dysfunction.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: December 27, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jeffrey R. Bailey, Gregory S. Payette
  • Patent number: 11364705
    Abstract: A multi-layer friction reducing tape, including: a foil layer including a metal, polymer, or hybrid-metal-polymer; an under layer disposed on the foil layer; an adhesion promoting layer contiguous with a surface of the under layer; a functional layer that includes a fullerene based composite, a diamond based material, diamond-like-carbon (DLC), or combinations thereof, wherein the functional layer is contiguous with a surface of the adhesion promoting layer; and a tape, including an adhesive layer and a backing material, wherein the adhesive layer is attached to a surface of the foil layer opposite the under layer.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: June 21, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Lei Wang, Jeffrey R. Bailey, Srinivasan Rajagopalan, Adnan Ozekcin, Mehmet Deniz Ertas, Erika Biediger
  • Patent number: 11320552
    Abstract: Methods are disclosed for monitoring operation integrity during hydrocarbon production or fluid injection operations. According to the methods, received microseismic data is processed to obtain a plurality of data panels corresponding to microseismic data measured over a predetermined time interval. For each data panel, trigger values are calculated for data traces corresponding to sensor receivers of the microseismic monitoring system. At least one data panel is selected as a triggered data panel that satisfies predetermined triggering criteria. A value is calculated for each of at least two event attributes of a plurality of event attributes of the event. An event is classified into at least one event category of a plurality of event categories based on the event score. Related non-transitory computer usable mediums are also disclosed.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: May 3, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Sri Venkata Tapovan Lolla, Jeffrey R. Bailey, Simona O. Costin, Michael S. Hons, Helen Yam, Arslan Akhmetov, Tim W. Hayward, Richard J. Smith, Colum M. Keith, Marc-Andre P. Chen, Xinlong Liu
  • Patent number: 10968730
    Abstract: A method of optimizing drilling ramp-up is provided herein. More specifically, a method of ramping up a drilling operation from a static condition (0, 0) to optimum drilling parameter values (WOB*, RPM*) is provided. The method includes identifying a set of drilling control variables used in forming the wellbore. Examples include weight-on-bit (WOB) and rate of penetration (RPM). The method additionally includes selecting desired control variable values for a first identified drilling stage. The values may be generically referred to as (V1, V2). The method also includes increasing the drilling control variables from (0, 0) to pre-defined drilling control variable values (V1, V2). Preferably, V1 is a WOB value while V2 is a rotation speed value (RPM). The method also comprises monitoring a performance index (PI), wherein (PI) is a combination of torque (TQ) and penetration rate (RPM).
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: April 6, 2021
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Lei Wang, Gregory S. Payette, Jeffrey R. Bailey, Jeff H. Moss
  • Publication number: 20210047909
    Abstract: The present disclosure relates generally to the field of drilling operations. More particularly, the present disclosure relates to methods for drilling wells utilizing drilling equipment, more particularly drill string assemblies, and making adjustments to drilling parameters during the drilling operation based on analysis of the drilling data. Included are methods for the selection of modified drilling parameters to mitigate torsional vibration dysfunction.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 18, 2021
    Inventors: Jeffrey R. Bailey, Gregory S. Payette
  • Patent number: 10921471
    Abstract: Methods and systems are disclosed for monitoring operation integrity during hydrocarbon production or fluid injection operations. According to the methods and systems, received microseismic data is processed to obtain a plurality of data panels corresponding to microseismic data measured over a predetermined time interval. For each data panel, trigger values are calculated for data traces corresponding to sensor receivers of the microseismic monitoring system. At least one data panel is selected as a triggered data panel that satisfies predetermined triggering criteria. At least one triggered data panel is selected as a non-trivial data panel that satisfies spectral density criteria. A value is calculated for each of at least two event attributes of a plurality of event attributes of the event. An event score is determined based on the values of the plurality of event attributes. An event is classified into at least one event category of a plurality of event categories based on the event score.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: February 16, 2021
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Sri Venkata Tapovan Lolla, Jeffrey R. Bailey, Simona O. Costin, Michael S. Hons, Helen Yam, Arslan Akhmetov, Tim W. Hayward, Richard J. Smith, Colum M. Keith, Marc-Andre P. Chen
  • Patent number: 10851639
    Abstract: The present disclosure relates generally to the field of drilling operations. More particularly, the present disclosure relates to methods for drilling wells utilizing drilling equipment, more particularly drill string assemblies, and predicting modified drilling operation conditions based on proposed changes to the drill string configuration and/or the drilling parameters. Included are methods for drilling wells utilizing a method for the selection of modified drill string assemblies and/or modified drilling parameters.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: December 1, 2020
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jeffrey R. Bailey, Gregory S. Payette
  • Patent number: 10662751
    Abstract: Methods and systems for controlling a drilling operation based on an MSE value calculated for a depth increment are disclosed herein. In an exemplary method, drilling parameters characterizing a drilling operation in a subterranean formation are received in a control system. The drilling parameters are used by the control system to calculate a depth-based mechanical specific energy (MSE) based on some amount of energy expended by at least a portion of a drilling assembly while drilling at least one identified depth sub-interval of a depth interval of a subterranean formation. The control system uses the calculated depth-based MSE to control the drilling operation.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: May 26, 2020
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Gregory S. Payette, Dar-Lon Chang, Darren Pais, Jeffrey R. Bailey
  • Publication number: 20190324166
    Abstract: Methods and systems for monitoring operation integrity during hydrocarbon production or fluid injection operations by receiving microseismic data; processing the data to obtain data panels corresponding to microseismic data measured over a time interval; determining, with a neural network analysis, whether any of the data panels includes a noise event or a non-noise event; calculating, for each data panel including a non-noise event, trigger values for data traces corresponding to sensor receivers of the microseismic monitoring system; selecting, as a triggered data panel, at least one data panel that satisfies triggering criteria; selecting, as a non-trivial data panel, at least one triggered data panel that satisfies spectral density criteria; calculating a value for each of at least two event attributes of the event; determining an event score based on the event attribute values; and classifying the event into at least one event category based on the event score.
    Type: Application
    Filed: June 20, 2019
    Publication date: October 24, 2019
    Inventors: Sri Venkata Tapovan LOLLA, Jeffrey R. Bailey, Simona O. Costin, Michael S. Hons, Helen Yam, Arslan Akhmetov, Tim W. Hayward, Richard J. Smith, Colum M. Keith, Marc-Andre P. Chen, Xinlong Liu
  • Publication number: 20190302291
    Abstract: Methods and systems for monitoring operation integrity during hydrocarbon production or fluid injection operations by receiving microseismic data; processing the microseismic data to obtain a plurality of data panels corresponding to microseismic data measured over a predetermined time interval; calculating, for each data panel, trigger values for data traces corresponding to sensor receivers of the microseismic monitoring system; selecting, as a triggered data panel, at least one data panel that satisfies predetermined triggering criteria; selecting, as a non-trivial data panel, at least one triggered data panel that satisfies spectral density criteria; calculating a value for each of at least two event attributes of a plurality of event attributes of the event; determining an event score based on the values of the plurality of event attributes; and classifying the event into at least one event category of a plurality of event categories based on the event score.
    Type: Application
    Filed: February 8, 2019
    Publication date: October 3, 2019
    Inventors: Sri Venkata Tapovan Lolla, Jeffrey R. Bailey, Simona O. Costin, Michael S. Hons, Helen Yam, Arslan Akhmetov, Tim W. Hayward, Richard j. Smith, Colum M. Keith, Marc-Andre P. Chen
  • Patent number: 10352099
    Abstract: Methods for drilling a wellbore within a subsurface region and drilling assemblies and systems that include and/or utilize the methods are disclosed herein. The methods include receiving a plurality of drilling performance indicator maps, normalizing the plurality of drilling performance indicator maps to generate a plurality of normalized maps, adaptive trending of the plurality of drilling performance indicator maps to generate a plurality of trended maps, summing the plurality of trended maps to generate an objective map, selecting a desired operating regime from the objective map, and adjusting at least one drilling operational parameter of a drilling rig based, at least in part, on the desired operating regime.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: July 16, 2019
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Benjamin Spivey, Gregory S. Payette, Darren Pais, Krishnan Kumaran, Lei Wang, Jeffrey R. Bailey, Paul E. Pastusek
  • Patent number: 10337295
    Abstract: A method to drill a borehole or wellbore through an earthen formation using a drill bit on a drillstring, comprising the steps of: selecting a frequency-domain dynamic model of a drilling assembly that describes the dynamic response of the drilling assembly to excitation at an excitation frequency for operating at a set of selected drilling parameters that include at least rotary speed and weight on bit; calculating a composite vibration index by combining calculated vibration indices for each excitation frequency with the spectral weighting factors for each of the drilling parameter partitions; displaying said composite vibration index for each of the drilling parameter partitions; selecting preferred drilling parameters based on the displayed results, and using the preferred drilling parameters to drill a borehole with the modeled drilling assembly.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: July 2, 2019
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jeffrey R. Bailey, Gregory S. Payette, Benjamin J. Spivey
  • Publication number: 20190111661
    Abstract: A multi-layer friction reducing tape, including: a foil layer including a metal, polymer, or hybrid-metal-polymer; an under layer disposed on the foil layer; an adhesion promoting layer contiguous with a surface of the under layer; a functional layer that includes a fullerene based composite, a diamond based material, diamond-like-carbon (DLC), or combinations thereof, wherein the functional layer is contiguous with a surface of the adhesion promoting layer; and a tape, including an adhesive layer and a backing material, wherein the adhesive layer is attached to a surface of the foil layer opposite the under layer.
    Type: Application
    Filed: September 5, 2018
    Publication date: April 18, 2019
    Inventors: Lei Wang, Jeffrey R. Bailey, Srinivasan Rajagopalan, Adnan Ozekcin, Mehmet Deniz Ertas, Erika Biediger
  • Publication number: 20190032467
    Abstract: A method of optimizing drilling ramp-up is provided herein. More specifically, a method of ramping up a drilling operation from a static condition (0, 0) to optimum drilling parameter values (WOB*, RPM*) is provided. The method includes identifying a set of drilling control variables used in forming the wellbore. Examples include weight-on-bit (WOB) and rate of penetration (RPM). The method additionally includes selecting desired control variable values for a first identified drilling stage. The values may be generically referred to as (V1, V2). The method also includes increasing the drilling control variables from (0, 0) to pre-defined drilling control variable values (V1, V2). Preferably, V1 is a WOB value while V2 is a rotation speed value (RPM). The method also comprises monitoring a performance index (PI), wherein (PI) is a combination of torque (TQ) and penetration rate (RPM).
    Type: Application
    Filed: June 25, 2018
    Publication date: January 31, 2019
    Inventors: Lei Wang, Gregory S. Payette, Jeffrey R. Bailey, Jeff H. Moss
  • Publication number: 20180283161
    Abstract: The present disclosure relates generally to the field of drilling operations. More particularly, the present disclosure relates to methods for drilling wells utilizing drilling equipment, more particularly drill string assemblies, and predicting modified drilling operation conditions based on proposed changes to the drill string configuration and/or the drilling parameters. Included are methods for drilling wells utilizing a method for the selection of modified drill string assemblies and/or modified drilling parameters.
    Type: Application
    Filed: March 28, 2018
    Publication date: October 4, 2018
    Inventors: Jeffrey R. Bailey, Gregory S. Payette
  • Publication number: 20170183940
    Abstract: A method to drill a borehole or wellbore through an earthen formation using a drill bit on a drillstring, comprising the steps of: selecting a frequency-domain dynamic model of a drilling assembly that describes the dynamic response of the drilling assembly to excitation at an excitation frequency for operating at a set of selected drilling parameters that include at least rotary speed and weight on bit; calculating a composite vibration index by combining calculated vibration indices for each excitation frequency with the spectral weighting factors for each of the drilling parameter partitions; displaying said composite vibration index for each of the drilling parameter partitions; selecting preferred drilling parameters based on the displayed results, and using the preferred drilling parameters to drill a borehole with the modeled drilling assembly.
    Type: Application
    Filed: December 22, 2016
    Publication date: June 29, 2017
    Inventors: Jeffrey R. Bailey, Gregory S. Payette, Benjamin J. Spivey
  • Patent number: 9598947
    Abstract: Methods and systems for controlling drilling operations include using a statistical model to identify at least two controllable drilling parameters having significant correlation to one or more drilling performance measurements. The methods and systems further generate operational recommendations for at least two controllable drilling parameters based at least in part on the statistical model. The operational recommendations are selected to optimize one or more drilling performance measurements.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: March 21, 2017
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jingbo Wang, Krishnan Kumaran, Peng Xu, Steven F. Sowers, Lei Wang, Jeffrey R. Bailey, Erika A. O. Biediger, Vishwas Gupta, Narasimha-Rao V. Bangaru, Swarupa S. Bangaru
  • Publication number: 20170058657
    Abstract: Methods for drilling a wellbore within a subsurface region and drilling assemblies and systems that include and/or utilize the methods are disclosed herein. The methods include receiving a plurality of drilling performance indicator maps, normalizing the plurality of drilling performance indicator maps to generate a plurality of normalized maps, adaptive trending of the plurality of drilling performance indicator maps to generate a plurality of trended maps, summing the plurality of trended maps to generate an objective map, selecting a desired operating regime from the objective map, and adjusting at least one drilling operational parameter of a drilling rig based, at least in part, on the desired operating regime.
    Type: Application
    Filed: July 13, 2016
    Publication date: March 2, 2017
    Inventors: Benjamin Spivey, Gregory S. Payette, Darren Pais, Krishnan Kumaran, Lei Wang, Jeffrey R. Bailey, Paul E. Pastusek
  • Patent number: 9483586
    Abstract: A method and apparatus associated with the production of hydrocarbons is disclosed. The method, which relates to modeling of drilling equipment, includes constructing one or more design configurations for at least a portion of a bottom hole assembly (BHA) and calculating results from each of the one or more design configurations. The calculated results of the modeling may include one or more performance indices that characterize the BHA vibration performance of the design configurations for operating parameters and boundary conditions that are substantially the same or may be different. These results are then simultaneously displayed for a user to facilitate design selection. The selected BHA design configuration may then be utilized in a well construction operation and thus associated with the production of hydrocarbons.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: November 1, 2016
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jeffrey R. Bailey, Erika A. O. Biediger, Vishwas Gupta
  • Patent number: 9482084
    Abstract: Integrated methods and systems for optimizing drilling related operations include recording data, parsing the data into intervals and analyzing the intervals to determine if the performance data in each time interval is of sufficient quality for using the interval data in a performance optimization process. The quality assessment may involve evaluating the data against a set of determined standards or ranges. The performance optimization process may utilize data mapping and/or modeling to make performance optimization process recommendations.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: November 1, 2016
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Dar-Lon Chang, Lei Wang, Paul E. Pastusek, Jeffrey R. Bailey, Gregory S. Payette, Darren Pais