Patents by Inventor Jeffrey R. Baker

Jeffrey R. Baker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9846091
    Abstract: Certain example embodiments include a press sensor element that includes a piezoelectric layer having a first surface in communication with a first layer, the first layer including a first conductive region, where the first conductive region covers at least a central portion the first surface. The sensor element includes a second surface in communication with a second layer, the second layer including a second conductive region, a third conductive region, and a first non-conductive void region separating the second conductive region and the third conductive region. An area of the first conductive region is configured in size relative to an area of the third conductive region to substantially reduce a thermally-induced voltage change between two or more of the first, second, and third conductive regions responsive to a corresponding temperature change of at least a portion of the piezoelectric layer.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: December 19, 2017
    Assignee: INTERLINK ELECTRONICS, INC.
    Inventors: Chee Wai Lu, Jeffrey R. Baker, Edwin Keshesh Yousafian, Declan Christopher Flannery
  • Publication number: 20170131160
    Abstract: Certain example embodiments include a press sensor element that includes a piezoelectric layer having a first surface in communication with a first layer, the first layer including a first conductive region, where the first conductive region covers at least a central portion the first surface. The sensor element includes a second surface in communication with a second layer, the second layer including a second conductive region, a third conductive region, and a first non-conductive void region separating the second conductive region and the third conductive region. An area of the first conductive region is configured in size relative to an area of the third conductive region to substantially reduce a thermally-induced voltage change between two or more of the first, second, and third conductive regions responsive to a corresponding temperature change of at least a portion of the piezoelectric layer.
    Type: Application
    Filed: January 10, 2017
    Publication date: May 11, 2017
    Inventors: Chee Wai Lu, Jeffrey R. Baker, Edwin Keshesh Yousafian, Declan Christopher Flannery
  • Patent number: 9574954
    Abstract: Certain example embodiments include a press sensor element that includes a piezoelectric layer having a first surface in communication with a first layer, the first layer including a first conductive region, where the first conductive region covers at least a central portion the first surface. The sensor element includes a second surface in communication with a second layer, the second layer including a second conductive region, a third conductive region, and a first non-conductive void region separating the second conductive region and the third conductive region. An area of the first conductive region is configured in size relative to an area of the third conductive region to substantially reduce a thermally-induced voltage change between two or more of the first, second, and third conductive regions responsive to a corresponding temperature change of at least a portion of the piezoelectric layer.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: February 21, 2017
    Assignee: INTERLINK ELECTRONICS, INC.
    Inventors: Jeffrey R. Baker, Edwin Keshesh Yousafian, Declan Christopher Flannery
  • Publication number: 20160131542
    Abstract: Certain example embodiments include a press sensor element that includes a piezoelectric layer having a first surface in communication with a first layer, the first layer including a first conductive region, where the first conductive region covers at least a central portion the first surface. The sensor element includes a second surface in communication with a second layer, the second layer including a second conductive region, a third conductive region, and a first non-conductive void region separating the second conductive region and the third conductive region. An area of the first conductive region is configured in size relative to an area of the third conductive region to substantially reduce a thermally-induced voltage change between two or more of the first, second, and third conductive regions responsive to a corresponding temperature change of at least a portion of the piezoelectric layer.
    Type: Application
    Filed: January 5, 2016
    Publication date: May 12, 2016
    Inventors: Jeffrey R. Baker, Edwin Keshesh Yousafian, Declan Christopher Flannery
  • Patent number: 9261418
    Abstract: Certain implementations of the disclosed technology may include systems, methods, and apparatus for common mode signal cancellation in force change detectors. An example embodiment of the disclosed technology includes a press sensor element configured to reduce or eliminate thermally induced signals. The sensor element includes a piezoelectric layer that includes a first surface in communication with a first layer. The first layer includes a first conductive region. The piezoelectric layer includes a second surface in communication with a second layer. The second layer includes a second conductive region, a third conductive region, and a non-conductive void region separating the second conductive region and the third conductive region.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: February 16, 2016
    Assignee: Interlink Electronics, Inc.
    Inventors: Jeffrey R. Baker, Edwin Keshesh Yousafian, Declan Christopher Flannery
  • Publication number: 20140260679
    Abstract: Certain implementations of the disclosed technology may include systems, methods, and apparatus for common mode signal cancellation in force change detectors. An example embodiment of the disclosed technology includes a press sensor element configured to reduce or eliminate thermally induced signals. The sensor element includes a piezoelectric layer that includes a first surface in communication with a first layer. The first layer includes a first conductive region. The piezoelectric layer includes a second surface in communication with a second layer. The second layer includes a second conductive region, a third conductive region, and a non-conductive void region separating the second conductive region and the third conductive region.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: Interlink Electronics, Inc.
    Inventors: Jeffrey R. Baker, Edwin Keshesh Yousafian, Declan Christopher Flannery
  • Patent number: 8669963
    Abstract: A sensor system includes a touch screen and a force sensor. The touch screen has a first and second surface and detects a first surface touch and converts it to data indicative of an X, Y coordinate position upon the touch screen first surface. The force sensor contacts the touch screen second surface and substantially extends around the perimeter of the touch screen second surface. The force sensor measures the force exerted by the first surface touch in the form of force data.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: March 11, 2014
    Assignee: Interlink Electronics, Inc.
    Inventors: Jeffrey R. Baker, Volodymyr Vlaskin, Carlos Solis Sanchez, Matthew Fumio Yamamoto, Declan Christopher Flannery
  • Patent number: 8531392
    Abstract: An apparatus and method for using a scroll sensor providing a touch sensitive control input surface for a plurality of control functions is provided. The input surface is divided into a plurality of regions. Each region is assigned to one of the plurality of control functions. At least one of these control functions accepts parametric control input. A first touch is received at one of the regions on the input surface. The control function assigned to the touched region is selected. If the selected control function is one of the control functions accepting parametric control input, a second touch on the input surface is received as parametric control input during an activation period for the selected control function. The second touch may be received as parametric control input at any point of the input surface.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: September 10, 2013
    Assignee: Interlink Electronics, Inc.
    Inventors: Steve B. Branton, Jeffrey R. Baker, David Lee Stallard, Dustin J. Luck
  • Patent number: 8049731
    Abstract: A method for implementing a control function via a sensor having a touch sensitive control input surface. The method includes detecting a contact with the touch sensitive control input surface, determining a pressure value corresponding to the contact, and initiating a control function from a set of possible control functions based at least in part on the pressure value.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: November 1, 2011
    Assignee: Interlink Electronics, Inc.
    Inventors: Jeffrey R. Baker, Michael J. Errico, David J. Arthur, Steve B. Branton
  • Publication number: 20110187674
    Abstract: A sensor system includes a touch screen and a force sensor. The touch screen has a first and second surface and detects a first surface touch and converts it to data indicative of an X, Y coordinate position upon the touch screen first surface. The force sensor contacts the touch screen second surface and substantially extends around the perimeter of the touch screen second surface. The force sensor measures the force exerted by the first surface touch in the form of force data.
    Type: Application
    Filed: February 3, 2011
    Publication date: August 4, 2011
    Applicant: INTERLINK ELECTRONICS, INC.
    Inventors: Jeffrey R. Baker, Volodymyr Vlaskin, Carlos Solis Sanchez, Matthew Fumio Yamamoto, Declan Christopher Flannery
  • Patent number: 7791596
    Abstract: A touch input device includes two or more interleaved scroll sensors. A common area is interposed between two of the scroll sensors. A sense line snakes through the common area. Scrolling pressure applied to a sense layer causes the sense layer to contact and electrically connect the sense line to the scroll sensors thereby permitting the scrolling pressure position to be determined by measuring a voltage on the sense line. The scroll sensors are potentiometric and may be linear strip scroll sensors or rotary ring scroll sensors. The interleaved scroll sensors with the common area allow smooth scrolling action from one major leg to another major leg.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: September 7, 2010
    Assignee: Interlink Electronics, Inc.
    Inventors: Michael Errico, Jeffrey R. Baker
  • Patent number: 7772960
    Abstract: A force sensing resistor (FSR) includes a substrate having separated electrically conductive traces and another substrate having a resistive layer in which the substrates are subjected to a biasing force such that the substrates contact one another with the resistive layer electrically connecting the traces with a resistance inversely dependent on the biasing force. Upon an external force applied towards a substrate, the substrates contact one another with a total force which is the sum of the forces with the resistive layer electrically connecting the traces with a resistance inversely dependent on the total force. An FSR output which is a function of the resistance is measured. Whether a change in magnitude of the FSR output during a time interval is greater than a threshold is determined. A touch applied on the FSR is detected during the time interval if the change is greater than the threshold.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: August 10, 2010
    Assignee: Interlink Electronics, Inc.
    Inventor: Jeffrey R. Baker
  • Patent number: 7573464
    Abstract: A touchpad includes a first substrate and a second substrate, at least one of which is flexible. A resistor on the first substrate has a narrow shape dividing the first substrate into two regions. A set of conductors in electrical contact with the resistor extend from the resistor into the two regions. A second resistor and at least one second substrate conductor in electrical contact with the second resistor are on the second substrate. This construction allows the touchpad to have an outer shape is not restricted by the need for rectangular coordinates.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: August 11, 2009
    Assignee: Interlink Electronics, Inc.
    Inventors: Jeffrey R. Baker, Michael Errico, Carlos Solis Sanchez
  • Patent number: 7554531
    Abstract: The present invention determines angular position using a potentiometric touch sensor. The sensor has an annular pattern of resistive material on a portion of a bottom substrate top surface. Conductive drive lines and fixed potential conductive traces radially traverse the bottom substrate top surface and are electrically coupled to the resistive material. Conductive sense traces radially traverse the bottom substrate top surface. A conductive layer on a bottom surface of a top substrate is positioned above the bottom substrate top surface. A pressure applied to the top substrate and/or the bottom substrate electrically couples a portion of a conductive sense trace to a portion of the annular pattern and/or a fixed potential conductive trace. The angular position of the applied pressure is determined by measuring at least one electrical parameter between a conductive drive line and a conductive sense line having the conductive sense traces.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: June 30, 2009
    Assignee: Interlink Electronics, Inc.
    Inventors: Jeffrey R. Baker, Carlos S. Sanchez
  • Publication number: 20090134966
    Abstract: A force sensing resistor (FSR) includes a substrate having separated electrically conductive traces and another substrate having a resistive layer in which the substrates are subjected to a biasing force such that the substrates contact one another with the resistive layer electrically connecting the traces with a resistance inversely dependent on the biasing force. Upon an external force applied towards a substrate, the substrates contact one another with a total force which is the sum of the forces with the resistive layer electrically connecting the traces with a resistance inversely dependent on the total force. An FSR output which is a function of the resistance is measured. Whether a change in magnitude of the FSR output during a time interval is greater than a threshold is determined. A touch applied on the FSR is detected during the time interval if the change is greater than the threshold.
    Type: Application
    Filed: November 27, 2007
    Publication date: May 28, 2009
    Applicant: Interlink Electronics, Inc.
    Inventor: Jeffrey R. Baker
  • Publication number: 20080018609
    Abstract: A touchpad includes a first substrate and a second substrate, at least one of which is flexible. A resistor on the first substrate has a narrow shape dividing the first substrate into two regions. A set of conductors in electrical contact with the resistor extend from the resistor into the two regions. A second resistor and at least one second substrate conductor in electrical contact with the second resistor are on the second substrate. This construction allows the touchpad to have an outer shape is not restricted by the need for rectangular coordinates.
    Type: Application
    Filed: July 20, 2006
    Publication date: January 24, 2008
    Applicant: Interlink Electronics, Inc.
    Inventors: Jeffrey R. Baker, Michael Errico, Carlos Solis Sanchez
  • Patent number: 7310089
    Abstract: The present invention determines angular position using a potentiometric touch sensor. The sensor has an annular pattern of resistive material on a bottom substrate top surface. Conductive drive lines radially traverse the resistive material so as to make electrical connection with the resistive material. A top substrate is spaced above the top surface of the bottom substrate. A conductive sense layer on a bottom surface of the top substrate is positioned above the resistive material. Pressure applied to either the top substrate or the bottom substrate, such as by the touch of a user, causes a portion of the conductive sense layer to contact a corresponding portion of the annular pattern of resistive material. The angular position of the applied pressure can be determined by measuring at least one electrical parameter between at least one of the conductive drive lines and the conductive sense layer.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: December 18, 2007
    Assignee: Interlink Electronics, Inc.
    Inventors: Jeffrey R. Baker, Carlos S. Sanchez
  • Patent number: 7213323
    Abstract: The cost and complexity of an electronic pressure sensitive transducer are decreased by constructing such a transducer directly on a printed circuit board containing support electronics. Conductive traces are formed on the printed circuit board to define a contact area. A flexible substrate having an inner surface is positioned over the contact area. An adhesive spacer, substantially surrounding the contact area, attaches the flexible substrate to the printed circuit board. At least one resistive layer is deposited on the flexible substrate inner surface. In use, the resistive layer contacts at least two conductive traces in response to pressure applied to the flexible substrate to produce an electrical signal indicative of applied pressure.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: May 8, 2007
    Assignee: Interlink Electronics, Inc.
    Inventors: Jeffrey R. Baker, Carlos S. Sanchez, Patrick H. Bair
  • Patent number: 7113179
    Abstract: A force sensing resistor includes two substrates. Conductive traces including first, common, and calibration fingers are on the first substrate and define a contact area. A spacer surrounds the contact area and attaches the substrates together such that a cavity separates the substrates in the contact area. A first resistive layer is on the second substrate and arranged within the cavity. In response to a force moving one substrate, the first resistive layer electrically connects the first and common fingers with a resistance dependent upon resistivity of the first resistive layer and the applied force to produce an electrical signal indicative of the applied force. A second resistive layer is arranged within the cavity and electrically connects the calibration and common fingers with a resistance dependent upon resistivity of the second resistive layer to produce an electrical signal indicative of the resistivity of the second resistive layer.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: September 26, 2006
    Assignee: Interlink Electronics, Inc.
    Inventors: Jeffrey R. Baker, Carlos S. Sanchez
  • Patent number: 7050045
    Abstract: A pointing device may be directly soldered to a printed circuit board. In one embodiment, a bottom substrate defines a sensing region with a plurality of interdigitated conductive trace regions. Each trace region includes interdigitated common and sense traces. At least one via passes through the bottom substrate for each trace. Each via supports a conductive path from one trace to at least one lead element. Each lead element is solderable to a printed circuit board. A flexible substrate is constructed from a heat resistant polymer. The flexible substrate has a resistive layer deposited on a bottom side. A raised pedestal is formed on the bottom substrate top face around at least a portion of the sensing region. The pedestal separates the interdigitated conductive traces from the flexible substrate resistive layer. A button on a keypad membrane may be used to depress the flexible substrate onto the trace region.
    Type: Grant
    Filed: January 7, 2003
    Date of Patent: May 23, 2006
    Assignee: Interlink Electronics, Inc.
    Inventors: Jeffrey R. Baker, Carlos S. Sanchez, James D. Tickle