Patents by Inventor Jeffrey R. Dixon

Jeffrey R. Dixon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240109851
    Abstract: The present disclosure provides methods for preparing MCL1 inhibitors or a salt thereof and related key intermediates.
    Type: Application
    Filed: August 1, 2023
    Publication date: April 4, 2024
    Inventors: Katrien Brak, Kae M. Bullock, Greg Cizio, Kathy Dao, Darryl D. Dixon, Joshua R. Dunetz, Luke D. Humphreys, Valerie Huynh, Michael A. Ischay, Trevor C. Johnson, Jeffrey E. Merit, Christopher S. Regens, Eric A. Standley, Dietrich P. Steinhuebel, Justin Y. Su, Tao Wu, Marshall D. Young
  • Publication number: 20190358446
    Abstract: Tips for use on a tunneling tool provide the ability to pull an implantable medical lead extension or catheter body through a subcutaneous tunnel. The tips may include a pin with a barb, where the barb is inserted within a compliant portion of a connector body of the lead extension or a catheter body to create an interference fit that allows the connector body or catheter body to be pulled through the tunnel. The tips may include a carrier that has a cavity for the connector body, where the tunneling is performed with the carrier present on the tunneling tool. A body is positioned within the cavity of the carrier to prevent tissue from snagging on and collecting within the carrier. The body may include a tip portion that performs the tunneling function. The carrier may also provide tunneling and/or may be attached to the tunneling tool during tunneling.
    Type: Application
    Filed: August 9, 2019
    Publication date: November 28, 2019
    Inventors: Scott M. Hanson, Bruce A. Behymer, Charles T. Bombeck, Douglas S. Cerny, Darrin E. Dickerson, Jeffrey R. Dixon, Phillip C. Falkner, Evan M. Gustafson, Raymond F. McMullen, Thomas I. Miller, Joseph P. Ricci, Adam J. Rivard
  • Patent number: 10391303
    Abstract: Tips for use on a tunneling tool provide the ability to pull an implantable medical lead extension or catheter body through a subcutaneous tunnel. The tips may include a pin with a barb, where the barb is inserted within a compliant portion of a connector body of the lead extension or a catheter body to create an interference fit that allows the connector body or catheter body to be pulled through the tunnel. The tips may include a carrier that has a cavity for the connector body, where the tunneling is performed with the carrier present on the tunneling tool. A body is positioned within the cavity of the carrier to prevent tissue from snagging on and collecting within the carrier. The body may include a tip portion that performs the tunneling function. The carrier may also provide tunneling and/or may be attached to the tunneling tool during tunneling.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: August 27, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Scott M. Hanson, Bruce A. Behymer, Charles T. Bombeck, Douglas S. Cerny, Darrin E. Dickerson, Jeffrey R. Dixon, Phillip C. Falkner, Evan M. Gustafson, Raymond F. McMullen, Thomas I. Miller, Joseph P. Ricci, Adam J. Rivard, Chad C. Whiterabbit
  • Patent number: 10279186
    Abstract: A system may include a processor configured to automatically obtain magnetic resonance imaging compatibility information relating to compatibility of an active implantable medical device implantable in a patient with an MRI modality from at least two information sources. The processor may also be configured to automatically determine compatibility of the active implantable medical device with the magnetic resonance imaging modality based on the magnetic resonance imaging compatibility information.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: May 7, 2019
    Assignee: Medtronic, Inc.
    Inventors: Hrishikesh Gadagkar, James Zimmerman, James M. Olsen, Robyn L. Jagler, Timothy R. Abraham, Jeffrey R. Dixon
  • Patent number: 10130282
    Abstract: Verification that an implantable medical system within a patient is MRI safe is provided. Several verifications may be performed such as verifying that the device and leads are of an MRI safe type, that the leads have adequate electrical integrity, that the device has entered an MRI safe mode, that the lead routing and device placement are MRI safe, and that the MRI settings of the MRI machine are safe for the implantable medical system. The result of these verifications may lead to a conclusion that the implantable medical system of interest is or is not MRI safe for a given MRI scan. An indication of this result may be output such as via a display so that an MRI technician can have some assurance as to whether to conduct the MRI scan.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: November 20, 2018
    Assignee: MEDTRONIC, INC.
    Inventors: Steven M. Goetz, Shahram Malekkhosravi, Todd V. Smith, Kristin J. Malekkhosravi, Jeffrey R. Dixon
  • Publication number: 20180304087
    Abstract: A system may include a processor configured to automatically obtain magnetic resonance imaging compatibility information relating to compatibility of an active implantable medical device implantable in a patient with an MRI modality from at least two information sources. The processor may also be configured to automatically determine compatibility of the active implantable medical device with the magnetic resonance imaging modality based on the magnetic resonance imaging compatibility information.
    Type: Application
    Filed: June 25, 2018
    Publication date: October 25, 2018
    Inventors: Hrishikesh Gadagkar, James Zimmerman, James M. Olsen, Robyn L. Jagler, Timothy R. Abraham, Jeffrey R. Dixon
  • Patent number: 10004910
    Abstract: A system may include a processor configured to automatically obtain magnetic resonance imaging compatibility information relating to compatibility of an active implantable medical device implantable in a patient with an MRI modality from at least two information sources. The processor may also be configured to automatically determine compatibility of the active implantable medical device with the magnetic resonance imaging modality based on the magnetic resonance imaging compatibility information.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: June 26, 2018
    Assignee: Medtronic, Inc.
    Inventors: Hrishikesh Gadagkar, James Zimmerman, James M. Olsen, Robyn L. Jagler, Timothy R. Abraham, Jeffrey R. Dixon
  • Publication number: 20170348537
    Abstract: A system may include a processor configured to automatically obtain magnetic resonance imaging compatibility information relating to compatibility of an active implantable medical device implantable in a patient with an MRI modality from at least two information sources. The processor may also be configured to automatically determine compatibility of the active implantable medical device with the magnetic resonance imaging modality based on the magnetic resonance imaging compatibility information.
    Type: Application
    Filed: June 22, 2017
    Publication date: December 7, 2017
    Inventors: Hrishikesh Gadagkar, James Zimmerman, James M. Olsen, Robyn L. Jagler, Timothy R. Abraham, Jeffrey R. Dixon
  • Patent number: 9694188
    Abstract: A system may include a processor configured to automatically obtain magnetic resonance imaging compatibility information relating to compatibility of an active implantable medical device implantable in a patient with an MRI modality from at least two information sources. The processor may also be configured to automatically determine compatibility of the active implantable medical device with the magnetic resonance imaging modality based on the magnetic resonance imaging compatibility information.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: July 4, 2017
    Assignee: Medtronic, Inc.
    Inventors: Hrishikesh Gadagkar, James Zimmerman, James M. Olsen, Robyn L. Jagler, Timothy R. Abraham, Jeffrey R. Dixon
  • Patent number: 9420960
    Abstract: Various embodiments concern sensing bioelectrical signals using electrodes along a lead, the electrodes having a spatial configuration along the lead, generating signal data sets, one signal data set being generated for each bioelectrical signal, and graphically representing the electrodes and data representations of the signal data sets on a display. In various embodiments, each data representation indicates a parameter of a respective one of the data sets, the electrodes are graphically represented on the display in a spatial configuration representative of the spatial configuration of the electrodes along the lead, and each data representation is graphically represented on the display in spatial association with at least one electrode through which the bioelectrical signal on which the signal data set is based was sensed. The parameter can be indicative of the relative presence of a biomarker in the bioelectrical signals.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: August 23, 2016
    Assignee: Medtronic, Inc.
    Inventors: Maciej T. Lazarewicz, Gabriela C. Molnar, Jeffrey R. Dixon, Deborah A. McConnell
  • Patent number: 9174059
    Abstract: A system may include an active implantable medical device implantable in a body of a patient and a patient programmer for the AIMD. The patient programmer may be configured to obtain magnetic resonance imaging (MRI) compatibility information relating to compatibility of the AIMD with an MRI modality.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: November 3, 2015
    Assignee: Medtronic, Inc.
    Inventors: Hrishikesh Gadagkar, James Zimmerman, James M. Olsen, Robyn L. Jagler, Timothy R. Abraham, Jeffrey R. Dixon
  • Publication number: 20140222108
    Abstract: A system may include an active implantable medical device implantable in a body of a patient and a patient programmer for the AIMD. The patient programmer may be configured to obtain magnetic resonance imaging (MRI) compatibility information relating to compatibility of the AIMD with an MRI modality.
    Type: Application
    Filed: April 11, 2014
    Publication date: August 7, 2014
    Applicant: Medtronic, Inc.
    Inventors: Hrishikesh Gadagkar, James Zimmerman, James M. Olsen, Robyn L. Jagler, Timothy R. Abraham, Jeffrey R. Dixon
  • Patent number: 8712540
    Abstract: A system may include an active implantable medical device implantable in a body of a patient and a patient programmer for the AIMD. The patient programmer may be configured to obtain magnetic resonance imaging (MRI) compatibility information relating to compatibility of the AIMD with an MRI modality.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: April 29, 2014
    Assignee: Medtronic, Inc.
    Inventors: Hrishikesh Gadagkar, James Zimmerman, James M. Olsen, Robyn L. Jagler, Timothy R. Abraham, Jeffrey R. Dixon
  • Publication number: 20120101552
    Abstract: Various embodiments concern sensing bioelectrical signals using electrodes along a lead, the electrodes having a spatial configuration along the lead, generating signal data sets, one signal data set being generated for each bioelectrical signal, and graphically representing the electrodes and data representations of the signal data sets on a display. In various embodiments, each data representation indicates a parameter of a respective one of the data sets, the electrodes are graphically represented on the display in a spatial configuration representative of the spatial configuration of the electrodes along the lead, and each data representation is graphically represented on the display in spatial association with at least one electrode through which the bioelectrical signal on which the signal data set is based was sensed. The parameter can be indicative of the relative presence of a biomarker in the bioelectrical signals.
    Type: Application
    Filed: April 20, 2011
    Publication date: April 26, 2012
    Applicant: Medtronic, Inc.
    Inventors: Maciej T. Lazarewicz, Gabriela C. Molnar, Jeffrey R. Dixon, Deborah A. McConnell
  • Publication number: 20120035951
    Abstract: Verification that an implantable medical system within a patient is MRI safe is provided. Several verifications may be performed such as verifying that the device and leads are of an MRI safe type, that the leads have adequate electrical integrity, that the device has entered an MRI safe mode, that the lead routing and device placement are MRI safe, and that the MRI settings of the MRI machine are safe for the implantable medical system. The result of these verifications may lead to a conclusion that the implantable medical system of interest is or is not MRI safe for a given MRI scan. An indication of this result may be output such as via a display so that an MRI technician can have some assurance as to whether to conduct the MRI scan.
    Type: Application
    Filed: April 28, 2010
    Publication date: February 9, 2012
    Applicant: Medtronic, Inc.
    Inventors: Steven M. Goetz, Shahram Malekkhosravi, Todd V. Smith, Kristin J. Malekkhosravi, Jeffrey R. Dixon
  • Publication number: 20100137945
    Abstract: A system may include a processor configured to automatically obtain magnetic resonance imaging compatibility information relating to compatibility of an active implantable medical device implantable in a patient with an MRI modality from at least two information sources. The processor may also be configured to automatically determine compatibility of the active implantable medical device with the magnetic resonance imaging modality based on the magnetic resonance imaging compatibility information.
    Type: Application
    Filed: November 25, 2009
    Publication date: June 3, 2010
    Inventors: Hrishikesh Gadagkar, James Zimmerman, James M. Olsen, Robyn L. Jagler, Timothy R. Abraham, Jeffrey R. Dixon
  • Publication number: 20100137947
    Abstract: A system may include an active implantable medical device implantable in a body of a patient and a patient programmer for the AIMD. The patient programmer may be configured to obtain magnetic resonance imaging (MRI) compatibility information relating to compatibility of the AIMD with an MRI modality.
    Type: Application
    Filed: November 25, 2009
    Publication date: June 3, 2010
    Applicant: Medtronic, Inc.
    Inventors: Hrishikesh Gadagkar, James Zimmerman, James M. Olsen, Robyn L. Jagler, Timothy R. Abraham, Jeffrey R. Dixon
  • Publication number: 20100137946
    Abstract: A system may include a patient information terminal that receives magnetic resonance imaging compatibility information from a patient and a processor that automatically determines compatibility of an active implantable medical device with an magnetic resonance imaging modality based on the magnetic resonance imaging compatibility information. The magnetic resonance imaging compatibility information includes information relating to compatibility of the active implantable medical device implantable in the patient and the magnetic resonance imaging modality.
    Type: Application
    Filed: November 25, 2009
    Publication date: June 3, 2010
    Inventors: Hrishikesh Gadagkar, James Zimmerman, James M. Olsen, Robyn L. Jagler, Timothy R. Abraham, Jeffrey R. Dixon