Patents by Inventor Jeffrey R. Long

Jeffrey R. Long has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10722863
    Abstract: A system and method for acid gas separations using porous frameworks of metal atoms coordinatively bound to polytopic linkers that are functionalized with basic nitrogen ligands that expose nitrogen atoms to the pore volumes forming adsorption sites. Adjacent basic nitrogen ligands on the metal-organic framework can form an ammonium from one ligand and a carbamate from the other. The formation of one ammonium carbamate pair influences the formation of ammonium carbamate on adjacent adsorption sites. Adsorption of acid gas at the adsorption sites form covalently linked aggregates of more than one ammonium carbamate ion pair. The acid gas adsorption isotherm can be tuned to match the step position with the partial pressure of acid gas in the gas mixture stream through manipulation of the metal-ligand bond strength by selection of the ligand, metal and polytopic linker materials.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: July 28, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Jeffrey R. Long, Thomas M. McDonald
  • Patent number: 10720635
    Abstract: An article having a continuous network of zinc and a continuous network of void space interpenetrating the zinc network. The zinc network is a fused, monolithic structure. A method of: providing an emulsion having a zinc powder and a liquid phase; drying the emulsion to form a sponge; annealing and/or sintering the sponge to form an annealed and/or sintered sponge; heating the annealed and/or sintered sponge in an oxidizing atmosphere to form an oxidized sponge having zinc oxide on the surface of the oxidized sponge; and electrochemically reducing the zinc oxide to form a zinc metal sponge.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: July 21, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Debra R. Rolison, Joseph F. Parker, Jeffrey W. Long, Jesse S. Ko
  • Patent number: 10702850
    Abstract: The disclosure provides for adsorbents with stepped isotherms for gas storage applications.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: July 7, 2020
    Assignee: The Regents of the University of California
    Inventors: Jeffrey R. Long, Jarad A. Mason, Mercedes K. Taylor, Julia Oktawiec
  • Patent number: 10665896
    Abstract: The disclosure provides for polymer networks having the general structure: that can effectively serve as a single-ion conducting electrolyte.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: May 26, 2020
    Assignee: The Regents of the University of California
    Inventors: Jeffrey R. Long, Jeffrey F. Van Humbeck, Jordan C. Axelson
  • Publication number: 20200152989
    Abstract: A laminated article having a first layer and a second layer. Each layer has a porous carbon structure and a porous polymer. The pores of the two porous polymers are from 1 nanometer to 10 microns in diameter, and the two porous polymers have different pore size distributions. A method of making the laminated article by hot-pressing the two or more layers. The article may be used in an electrochemical cell.
    Type: Application
    Filed: November 8, 2019
    Publication date: May 14, 2020
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Megan B. Sassin, Jeffrey W. Long, Debra R. Rolison
  • Patent number: 10651478
    Abstract: An article having a titanium, titanium carbide, titanium nitride, tantalum, aluminum, silicon, or stainless steel substrate, a RuO2 coating on a portion of the substrate; and a plurality of platinum nanoparticles on the RuO2 coating. The RuO2 coating contains nanoparticles of RuO2. A method of: immersing the substrate in a solution of RuO4 and a nonpolar solvent at a temperature that is below the temperature at which RuO4 decomposes to RuO2 in the nonpolar solvent in the presence of the article; warming the article and solution to ambient temperature under ambient conditions to cause the formation of a RuO2 coating on a portion of the article; and electrodepositing platinum nanoparticles on the RuO2 coating.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: May 12, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jeremy J Pietron, Michael B. Pomfret, Christopher N. Chervin, Debra R Rolison, Jeffrey W Long
  • Publication number: 20200101439
    Abstract: Methods of synthesizing crystalline metal-organic frameworks (MOFs) comprising polytopic organic linkers and cations, where each linker is connected to two or more cations, are provided. In the disclosed methods, the linkers are reacted with a compound of formula MnXm, where M is cationic Be, Mg, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Cd, or Hf, X is anionic, n and m are integers. The reacting is buffered by a buffer devoid of metal coordinating functionality when the pKa of the anion is below a threshold related to the lowest pKa of the linker. The reacting is optionally not buffered when the pKa of the anion is at or above this threshold. The disclosed methods lead to product phase MOF in which crystal growth is controlled leading to control over molecular diffusion.
    Type: Application
    Filed: September 25, 2019
    Publication date: April 2, 2020
    Inventors: Simon C. Weston, Jeffrey R. Long, Joseph M. Falkowski, Kristen Colwell, Rodolfo Torres
  • Patent number: 10605799
    Abstract: A method of selective detection of a concentration of a metal ion species in a subject is provided in which a biofluid sample is obtained from the subject. The biofluid sample is exposed to a functionalized porous aromatic polymer. The polymer selectively captures and concentrates the metal ion species from the biofluid. Subsequently, the biofluid is washed from the polymer. The polymer is then exposed to a solution comprising a colorimetric indicator that extracts the metal ion species from the washed polymer thereby changing a color of the solution as a function of an amount of the metal ion species in the polymer. The concentration of the metal ion species in the subject is then spectroscopically determined from the color of the solution.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: March 31, 2020
    Assignee: The Regents of The University of California
    Inventors: Christopher J. Chang, Jeffrey R. Long, Sumin Lee, Gokhan Barin
  • Patent number: 10538204
    Abstract: A compact deployable/retractable running board assembly for a motor vehicle including a running board, linkage coupled to the running board, and a motor assembly coupled to an actuator, the running board moveable between at least one stowed position and at least one deployed position. The linkage includes a drive arm connected to a pivot shaft within a housing at a location on the pivot shaft between two bushings that are coupled to the pivot shaft within the housing. The linkage also includes an idler arm connected to a pivot shaft within an idler housing. The actuator is operably coupled to the linkage to cause rotation of the linkage to move the running board between the at least one stowed position generally under the motor vehicle and at least one deployed position to provide a step surface for a user.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: January 21, 2020
    Assignee: Magna International Inc.
    Inventors: Albert Yuguang Long, Jeffrey R. Johnson
  • Patent number: 10497939
    Abstract: A composite having an electrically conductive substrate and a polymer derived from a vinyl-containing siloxane monomer coating on the substrate. A method of electropolymerizing a vinyl-containing siloxane monomer to form a coating on an electrically conductive substrate.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: December 3, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Megan B. Sassin, Jeffrey W. Long, Debra R. Rolison
  • Publication number: 20190308558
    Abstract: A compact deployable/retractable running board assembly for a motor vehicle including a running board, linkage coupled to the running board, and a motor assembly coupled to an actuator, the running board moveable between at least one stowed position and at least one deployed position. The linkage includes a drive arm connected to a pivot shaft within a housing at a location on the pivot shaft between two bushings that are coupled to the pivot shaft within the housing. The linkage also includes an idler arm connected to a pivot shaft within an idler housing. The actuator is operably coupled to the linkage to cause rotation of the linkage to move the running board between the at least one stowed position generally under the motor vehicle and at least one deployed position to provide a step surface for a user.
    Type: Application
    Filed: May 24, 2019
    Publication date: October 10, 2019
    Applicant: Magna International Inc.
    Inventors: Albert Yuguang Long, Jeffrey R. Johnson, Bradley E. Watson
  • Publication number: 20190291074
    Abstract: Functionalized metal-organic framework adsorbents with ligands containing basic nitrogen groups such as alkylamines and alkyldiamines appended to the metal centers and method of isolating carbon dioxide from a stream of combined gases and carbon dioxide partial pressures below approximately 1 and 1000 mbar. The adsorption material has an isosteric heat of carbon dioxide adsorption of greater than ?60 kJ/mol at zero coverage using a dual-site Langmuir model.
    Type: Application
    Filed: November 27, 2018
    Publication date: September 26, 2019
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Jeffrey R. Long, Thomas M. McDonald, Deanna M. D'Alessandro
  • Publication number: 20190247804
    Abstract: The disclosure provides for polymer membranes which comprise metal organic frameworks, methods of making therein, and methods of use thereof, including in gas separation.
    Type: Application
    Filed: November 15, 2016
    Publication date: August 15, 2019
    Applicant: The Regents of the University of California
    Inventors: Jeffrey R. LONG, Jonathan BACHMAN, Zachary Pace SMITH
  • Publication number: 20190223551
    Abstract: An article of footwear includes an upper, a midsole attached to the upper, and an outsole. The midsole has a footbed and a bottom surface disposed on an opposite side of the midsole than the footbed. The outsole has a ground-engaging surface, an inner surface disposed on an opposite side of the outsole than the ground-engaging surface, and a wall extending from the ground-engaging surface and surrounding the outsole. The article of footwear also includes a casing containing particulate matter and having a length that is greater than a length of the outsole. The casing includes a first fold at a predetermined location along its length. The casing is received within a cavity bounded by the wall of the outsole and between the bottom surface and the inner surface.
    Type: Application
    Filed: September 23, 2016
    Publication date: July 25, 2019
    Applicant: NIKE, Inc.
    Inventors: Kevin W. Hoffer, Scott C. Holt, Jeffrey L. Johnson, Cassidy R. Levy, Nicholas R. Long, Matthew C. Palmer
  • Publication number: 20190216167
    Abstract: An article of footwear includes an upper, an outsole, and a midsole disposed between the upper and the outsole. The outsole is attached to the upper and has a ground-engaging surface. The midsole has a series of walls that define a series of channels extending substantially perpendicular to a longitudinal axis of the midsole and along an entire length of the midsole. The series of channels are isolated from one another and each channel receives a quantity of particulate matter therein.
    Type: Application
    Filed: September 23, 2016
    Publication date: July 18, 2019
    Applicant: NIKE, Inc.
    Inventors: Kevin W. Hoffer, Scott C. Holt, Jeffrey L. Johnson, Cassidy R. Levy, Nicholas R. Long, Matthew C. Palmer
  • Patent number: 10343610
    Abstract: A compact deployable/retractable running board assembly for a motor vehicle including a running board, linkage coupled to the running board, and a motor assembly coupled to an actuator, the running board moveable between at least one stowed position and at least one deployed position. The linkage includes a drive arm connected to a pivot shaft within a housing at a location on the pivot shaft between two bushings that are coupled to the pivot shaft within the housing. The linkage also includes an idler arm connected to a pivot shaft within an idler housing. The actuator is operably coupled to the linkage to cause rotation of the linkage to move the running board between the at least one stowed position generally under the motor vehicle and at least one deployed position to provide a step surface for a user.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: July 9, 2019
    Assignee: Magna International Inc.
    Inventors: Albert Yuguang Long, Jeffrey R. Johnson, Bradley E. Watson
  • Publication number: 20190192540
    Abstract: Olsalazine (H4olz), a prodrug of the anti-inflammatory 5-aminosalicylic acid, is used as a ligand to synthesize a suite of M(H2olz) and M2(olz) materials, where M is a dication (e.g. Mg, Ca, Sr, Fe, Co, Ni, Cu, Zn). A family of metal olsalazine coordination polymers, coordination solids, and metal organic frameworks are described, which include 1-, 2-, and 3-dimensional structures. The materials resist degradation at acidic pH and release olsalazine preferentially at neutral pH. The mesoporous M2(olz) frameworks exhibit high surface areas with hexagonal pore apertures that are approximately 27 ? in diameter and contain coordinatively unsaturated metal sites. Biologically active molecules containing a Lewis-basic functional group can be grafted directly to the open metal sites of the frameworks. Dissolution of the frameworks under physiological conditions releases olsalazine (H4olz) and the grafted molecules so that multiple therapeutic components can be delivered together at different rates.
    Type: Application
    Filed: December 4, 2018
    Publication date: June 27, 2019
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Dana J. Levine, Jeffrey R. Long, Miguel I. Gonzalez
  • Publication number: 20190173141
    Abstract: A zinc-air battery having: a cathode, an anode, an electrolyte, a separator between the anode and the cathode, and a housing. The cathode includes: a cathode current collector and a composite having a porous carbon material, a porous cryptomelane-type MnOx material, a porous NiyFe1-yOx material, and a binder. The anode includes: a continuous network having metallic zinc and having metallic zinc bridges connecting metallic zinc particle cores and a continuous network of void space interpenetrating the zinc network. The electrolyte fills the void space in the anode, is in contact with the cathode, and permeates the composite without completely filling or obstructing a majority of the pores. The housing encloses the anode, the cathode, and the separator and exposes the composite to ambient air.
    Type: Application
    Filed: October 25, 2018
    Publication date: June 6, 2019
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Joseph F. Parker, Jeffrey W. Long, Debra R. Rolison, Christopher N. Chervin
  • Publication number: 20190126237
    Abstract: Polyamines with lengths carefully tailored to the framework dimensions are appended to metal-organic frameworks such as Mg2(dobpdc) (dobpdc4-=4,4?-dioxidobiphenyl-3,3?-dicarboxylate) with the desired loading of one polyamine per two metal sites. The polyamine-appended materials show step-shaped adsorption and desorption profiles due to a cooperative CO2 adsorption/desorption mechanism. Several disclosed polyamine-appended materials exhibit strong ability to capture CO2 from various compositions. Increased stability of amines in the framework has been achieved using high molecular weight polyamine molecules that coordinate multiple metal sites in the framework. The preparation of these adsorbents as well as their characterization are provided.
    Type: Application
    Filed: October 30, 2018
    Publication date: May 2, 2019
    Inventors: Simon C. Weston, Joseph M. Falkowski, Jeffrey R. Long, Eugene J. Kim, Jeffrey D. Martell, Phillip J. Milner, Rebecca L. Siegelman
  • Publication number: 20190060867
    Abstract: Primary, secondary (1º,2º) alkylethylenediamine- and alkylpropylenediamine-appended variants of metal-organic framework are provided for CO2 capture applications. Increasing the size of the alkyl group on the secondary amine enhances the stability to diamine volatilization from the metal sites. Two-step adsorption/desorption profiles are overcome by minimizing steric interactions between adjacent ammonium carbamate chains. For instance, the isoreticularly expanded framework Mg2(dotpdc) (dotpdc4?=4,4?-dioxido-[1,1?:4?,1?-terphenyl]-3,3?-dicarboxylate), yields diamine-appended adsorbents displaying a single CO2 adsorption step. Further, use of the isomeric framework Mg-IRMOF-74-II or Mg2(pc-dobpdc) (pc-dobpdc4?=3,3-dioxidobiphenyl-4,4-dicarboxylate, pc=para-carboxylate) also leads to a single CO2 adsorption step with bulky diamines.
    Type: Application
    Filed: July 25, 2018
    Publication date: February 28, 2019
    Inventors: Jeffrey R. Long, Simon Christopher Weston, Phillip J. Milner, Jeffrey D. Martell, Rebecca L. Siegelman