Patents by Inventor Jeffrey R. Sampson

Jeffrey R. Sampson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250092389
    Abstract: The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
    Type: Application
    Filed: September 12, 2024
    Publication date: March 20, 2025
    Inventors: Daniel E. RYAN, Douglas J. DELLINGER, Jeffrey R. SAMPSON, Robert KAISER, Joel MYERSON
  • Publication number: 20230416733
    Abstract: The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
    Type: Application
    Filed: June 9, 2023
    Publication date: December 28, 2023
    Inventors: Daniel E. RYAN, Douglas J. DELLINGER, Jeffrey R. SAMPSON, Robert KAISER, Joel MYERSON
  • Patent number: 11718849
    Abstract: The present invention relates to libraries of phosphopeptide-encoding oligonucleotides and methods of preparing such libraries. The present invention also relates to methods of detecting, visualizing, or screening for phosphorylation-dependent protein-protein interactions using recombinant phosphopeptides and/or phosphopeptide-encoding oligonucleotides. The present invention also relates to sets or kits of oligonucleotides having regions that encode phosphopeptides.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: August 8, 2023
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventors: Jesse Rinehart, Karl Barber, Farren Isaacs, Jeffrey R Sampson
  • Publication number: 20210079389
    Abstract: The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
    Type: Application
    Filed: November 24, 2020
    Publication date: March 18, 2021
    Inventors: Daniel E. RYAN, Douglas J. DELLINGER, Jeffrey R. SAMPSON, Robert KAISER, Joel MYERSON
  • Patent number: 10900034
    Abstract: The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: January 26, 2021
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventors: Daniel E. Ryan, Douglas J. Dellinger, Jeffrey R. Sampson, Robert Kaiser, Joel Myerson
  • Publication number: 20200339980
    Abstract: The present invention relates to guide RNAs having chemical modifications and their use in CRISPR-Cas systems. The chemically modified guide RNAs have enhanced specificity for target polynucleotide sequences. The present invention also relates to methods of using chemically modified guide RNAs for cleaving or nicking polynucleotides, and for high specificity genome editing.
    Type: Application
    Filed: July 15, 2020
    Publication date: October 29, 2020
    Inventors: Douglas J Dellinger, Daniel E Ryan, Subhadeep Roy, Jeffrey R Sampson
  • Patent number: 10767175
    Abstract: The present invention relates to guide RNAs having chemical modifications and their use in CRISPR-Cas systems. The chemically modified guide RNAs have enhanced specificity for target polynucleotide sequences. The present invention also relates to methods of using chemically modified guide RNAs for cleaving or nicking polynucleotides, and for high specificity genome editing.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: September 8, 2020
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventors: Douglas J Dellinger, Daniel E Ryan, Subhadeep Roy, Jeffrey R Sampson
  • Patent number: 10538796
    Abstract: Provided herein, among other things, is a method for producing a ligation product on a support. In some embodiments, the method may comprise hybridizing a first double-stranded oligonucleotides and a second double-stranded oligonucleotide to a substrate comprising surface-tethered oligonucleotides and ligating the distal ends of the first and second double-stranded oligonucleotides together, thereby producing a first ligation product that is tethered to the support at both ends.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: January 21, 2020
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventors: Nicholas M Sampas, Jeffrey R Sampson
  • Publication number: 20190256843
    Abstract: The present invention relates to libraries of phosphopeptide-encoding oligonucleotides and methods of preparing such libraries. The present invention also relates to methods of detecting, visualizing, or screening for phosphorylation-dependent protein-protein interactions using recombinant phosphopeptides and/or phosphopeptide-encoding oligonucleotides. The present invention also relates to sets or kits of oligonucleotides having regions that encode phosphopeptides.
    Type: Application
    Filed: February 18, 2019
    Publication date: August 22, 2019
    Inventors: Jesse Rinehart, Karl Barber, Farren Isaacs, Jeffrey R. Sampson
  • Patent number: 10337001
    Abstract: The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: July 2, 2019
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventors: Daniel E. Ryan, Douglas J. Dellinger, Jeffrey R. Sampson, Robert Kaiser, Joel Myerson
  • Publication number: 20180105853
    Abstract: Provided herein, among other things, is a method for producing a ligation product on a support. In some embodiments, the method may comprise hybridizing a first double-stranded oligonucleotides and a second double-stranded oligonucleotide to a substrate comprising surface-tethered oligonucleotides and ligating the distal ends of the first and second double-stranded oligonucleotides together, thereby producing a first ligation product that is tethered to the support at both ends.
    Type: Application
    Filed: October 12, 2017
    Publication date: April 19, 2018
    Inventors: Nicholas M Sampas, Jeffrey R Sampson
  • Publication number: 20180051281
    Abstract: The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
    Type: Application
    Filed: May 26, 2017
    Publication date: February 22, 2018
    Inventors: Daniel E. Ryan, Douglas J. Dellinger, Jeffrey R. Sampson, Robert Kaiser, Joel Myerson
  • Publication number: 20170355985
    Abstract: The present invention relates to guide RNAs having chemical modifications and their use in CRISPR-Cas systems. The chemically modified guide RNAs have enhanced specificity for target polynucleotide sequences. The present invention also relates to methods of using chemically modified guide RNAs for cleaving or nicking polynucleotides, and for high specificity genome editing.
    Type: Application
    Filed: April 20, 2017
    Publication date: December 14, 2017
    Inventors: Douglas J. Dellinger, Daniel E. Ryan, Subhadeep Roy, Jeffrey R. Sampson
  • Publication number: 20160289675
    Abstract: The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
    Type: Application
    Filed: December 3, 2015
    Publication date: October 6, 2016
    Inventors: Daniel E. Ryan, Douglas J. Dellinger, Jeffrey R. Sampson, Robert Kaiser, Joel Myerson
  • Publication number: 20150361422
    Abstract: Provided herein, among other things, is a method comprising: (a) obtaining a mixture of multiple sets of oligonucleotides, wherein the oligonucleotides within each set each comprise a terminal indexer sequence can be assembled to produce a synthon; and (b) hybridizing the oligonucleotide mixture to an array, thereby spatially-separating the different sets of oligonucleotides from one another. Other embodiments are also provided.
    Type: Application
    Filed: November 21, 2014
    Publication date: December 17, 2015
    Inventors: Jeffrey R. Sampson, Nicholas M. Sampas, Joel Myerson, Paige Anderson, Bo Curry
  • Publication number: 20150361423
    Abstract: Provided herein is a method comprising: (a) obtaining a mixture of multiple sets of oligonucleotides, wherein the oligonucleotides within each set each comprise a terminal indexer sequence and can be assembled to produce a synthon; and (b) hybridizing the oligonucleotide mixture to an array, thereby spatially-separating the different sets of oligonucleotides from one another. In some embodiments the method may comprise (c) contacting the array with a solution, thereby producing, for each feature bound by the oligonucleotides, a discrete droplet comprising the feature and, optionally, placing an immiscible liquid over the droplets, thereby producing, for each feature bound by the oligonucleotides, a discrete reaction chamber defined by a droplet. The method may further comprise incubating the array under conditions by which a synthon is assembled in each of the reaction chambers. Other embodiments are also provided.
    Type: Application
    Filed: September 15, 2014
    Publication date: December 17, 2015
    Inventors: Jeffrey R. Sampson, Nicholas M. Sampas
  • Publication number: 20150010953
    Abstract: Provided herein is a method for producing a population of oligonucleotides that has reduced synthesis errors. In certain embodiments, the method comprises: a) obtaining an initial population of hairpin oligonucleotide molecules that each comprise a double-stranded stem region and a loop region; b) contacting the double-stranded region of the hairpin oligonucleotide molecules with a mismatch binding protein; and c) eliminating any molecules that bind to the mismatch binding protein, thereby producing a population of oligonucleotides that has reduced synthesis errors. A kit and a composition for performing the method are also provided.
    Type: Application
    Filed: July 3, 2013
    Publication date: January 8, 2015
    Inventors: Derek Lee Lindstrom, Jeffrey R. Sampson, Daniel E. Ryan
  • Patent number: 8673556
    Abstract: Systems and methods for analysis of polymers, e.g., polynucleotides, are provided. The systems are capable of analyzing a polymer at a specified rate. One such analysis system includes a structure having a nanopore aperture and a molecular motor, e.g., a polymerase, adjacent the nanopore aperture.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: March 18, 2014
    Assignees: President and Fellows of Harvard College, Regents of the University of California, Agilent Technologies, Inc.
    Inventors: Mark Akeson, Daniel Branton, David W. Deamer, Jeffrey R. Sampson
  • Publication number: 20120094278
    Abstract: Systems and methods for analysis of polymers, e.g., polynucleotides, are provided. The systems are capable of analyzing a polymer at a specified rate. One such analysis system includes a structure having a nanopore aperture and a molecular motor, e.g., a polymerase, adjacent the nanopore aperture.
    Type: Application
    Filed: May 18, 2011
    Publication date: April 19, 2012
    Inventors: Mark Akeson, Daniel Branton, David W. Deamer, Jeffrey R. Sampson
  • Patent number: 7947454
    Abstract: Systems and methods for analysis of polymers, e.g., polynucleotides, are provided. The systems are capable of analyzing a polymer at a specified rate. One such analysis system includes a structure having a nanopore aperture and a molecular motor, e.g., a polymerase, adjacent the nanopore aperture.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: May 24, 2011
    Assignees: President and Fellows of Harvard College, Regents of the University of California, Agilent Technologies, Inc.
    Inventors: Mark Akeson, Daniel Branton, David W. Deamer, Jeffrey R. Sampson