Patents by Inventor Jeffrey R. Wank

Jeffrey R. Wank has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7812394
    Abstract: This invention adds to the art of replacement source-drain cMOS transistors. Processes may involve etching a recess in the substrate material using one equipment set, then performing deposition in another. Disclosed is a method to perform the etch and subsequent deposition in the same reactor without atmospheric exposure. In-situ etching of the source-drain recess for replacement source-drain applications provides several advantages over state of the art ex-situ etching. Transistor drive current is improved by: (1) Eliminating contamination of the silicon-epilayer interface when the as-etched surface is exposed to atmosphere and (2) Precise control over the shape of the etch recess. Deposition may be done by a variety of techniques including selective and non-selective methods. In the case of blanket deposition, a measure to avoid amorphous deposition in performance critical regions is also presented.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: October 12, 2010
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Glenn A. Glass, Andrew N. Westmeyer, Michael L. Hattendorf, Jeffrey R. Wank
  • Publication number: 20090039390
    Abstract: This invention adds to the art of replacement source-drain cMOS transistors. Processes may involve etching a recess in the substrate material using one equipment set, then performing deposition in another. Disclosed is a method to perform the etch and subsequent deposition in the same reactor without atmospheric exposure. In-situ etching of the source-drain recess for replacement source-drain applications provides several advantages over state of the art ex-situ etching. Transistor drive current is improved by: (1) Eliminating contamination of the silicon-epilayer interface when the as-etched surface is exposed to atmosphere and (2) Precise control over the shape of the etch recess. Deposition may be done by a variety of techniques including selective and non-selective methods. In the case of blanket deposition, a measure to avoid amorphous deposition in performance critical regions is also presented.
    Type: Application
    Filed: October 13, 2008
    Publication date: February 12, 2009
    Inventors: Anand Murthy, Glenn A. Glass, Andrew N. Westmeyer, Michael L. Hattendorf, Jeffrey R. Wank
  • Patent number: 7479432
    Abstract: This invention adds to the art of replacement source-drain cMOS transistors. Processes may involve etching a recess in the substrate material using one equipment set, then performing deposition in another. Disclosed is a method to perform the etch and subsequent deposition in the same reactor without atmospheric exposure. In-situ etching of the source-drain recess for replacement source-drain applications provides several advantages over state of the art ex-situ etching. Transistor drive current is improved by: (1) Eliminating contamination of the silicon-epilayer interface when the as-etched surface is exposed to atmosphere and (2) Precise control over the shape of the etch recess. Deposition may be done by a variety of techniques including selective and non-selective methods. In the case of blanket deposition, a measure to avoid amorphous deposition in performance critical regions is also presented.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: January 20, 2009
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Glenn A. Glass, Andrew N. Westmeyer, Michael L. Hattendorf, Jeffrey R. Wank
  • Patent number: 7195985
    Abstract: This invention adds to the art of replacement source-drain cMOS transistors. Processes may involve etching a recess in the substrate material using one equipment set, then performing deposition in another. Disclosed is a method to perform the etch and subsequent deposition in the same reactor without atmospheric exposure. In-situ etching of the source-drain recess for replacement source-drain applications provides several advantages over state of the art ex-situ etching. Transistor drive current is improved by: (1) Eliminating contamination of the silicon-epilayer interface when the as-etched surface is exposed to atmosphere and (2) Precise control over the shape of the etch recess. Deposition may be done by a variety of techniques including selective and non-selective methods. In the case of blanket deposition, a measure to avoid amorphous deposition in performance critical regions is also presented.
    Type: Grant
    Filed: January 4, 2005
    Date of Patent: March 27, 2007
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Glenn A. Glass, Andrew N. Westmeyer, Michael L. Hattendorf, Jeffrey R. Wank
  • Patent number: 6913827
    Abstract: Particles have an ultrathin, conformal coating are made using atomic layer deposition methods. The base particles include ceramic and metallic materials. The coatings can also be ceramic or metal materials that can be deposited in a binary reaction sequence. The coated particles are useful as fillers for electronic packaging applications, for making ceramic or cermet parts, as supported catalysts, as well as other applications.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: July 5, 2005
    Assignee: The Regents of the University of Colorado
    Inventors: Steven M. George, John D. Ferguson, Alan W. Weimer, Jeffrey R. Wank
  • Publication number: 20040121073
    Abstract: Particles have an ultrathin, conformal coating are made using atomic layer deposition methods. The base particles include ceramic and metallic materials. The coatings can also be ceramic or metal materials that can be deposited in a binary reaction sequence. The coated particles are useful as fillers for electronic packaging applications, for making ceramic or cermet parts, as supported catalysts, as well as other applications.
    Type: Application
    Filed: December 9, 2003
    Publication date: June 24, 2004
    Inventors: Steven M. George, John D. Ferguson, Alan W. Weimer, Jeffrey R. Wank
  • Patent number: 6713177
    Abstract: Particles have an ultrathin, conformal coating are made using atomic layer deposition methods. The base particles include ceramic and metallic materials. The coatings can also be ceramic or metal materials that can be deposited in a binary reaction sequence. The coated particles are useful as fillers for electronic packaging applications, for making ceramic or cermet parts, as supported catalysts, as well as other applications.
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: March 30, 2004
    Assignee: Regents of the University of Colorado
    Inventors: Steven M. George, John D. Ferguson, Alan W. Weimer, Jeffrey R. Wank
  • Publication number: 20030026989
    Abstract: Particles have an ultrathin, conformal coating are made using atomic layer deposition methods. The base particles include ceramic and metallic materials. The coatings can also be ceramic or metal materials that can be deposited in a binary reaction sequence. The coated particles are useful as fillers for electronic packaging applications, for making ceramic or cermet parts, as supported catalysts, as well as other applications.
    Type: Application
    Filed: July 16, 2002
    Publication date: February 6, 2003
    Inventors: Steven M. George, John D. Ferguson, Alan W. Weimer, Jeffrey R. Wank