Patents by Inventor Jeffrey S. Beck

Jeffrey S. Beck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8784647
    Abstract: In a process for producing a hydroprocessing catalyst, a particulate metal oxide composition comprising an oxide of at least one first metal selected from Group 6 of the Periodic Table of the Elements can be mixed with particles of a sulfide of at least one second metal selected from Groups 8 to 10 of the Periodic Table of the Elements to produce a particulate catalyst precursor. The particulate catalyst precursor can then be sulfided under conditions sufficient to at least partially convert the particulate catalyst precursor into a layered metal sulfide having defect sites associated with the second metal sulfide.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: July 22, 2014
    Assignee: ExxonMobil Research and Egineering Company
    Inventors: Chris E. Kliewer, Stuart L. Soled, Sabato Miseo, Jeffrey S. Beck
  • Publication number: 20110190557
    Abstract: In a process for producing a hydroprocessing catalyst, a particulate metal oxide composition comprising an oxide of at least one first metal selected from Group 6 of the Periodic Table of the Elements can be mixed with particles of a sulfide of at least one second metal selected from Groups 8 to 10 of the Periodic Table of the Elements to produce a particulate catalyst precursor. The particulate catalyst precursor can then be sulfided under conditions sufficient to at least partially convert the particulate catalyst precursor into a layered metal sulfide having defect sites associated with the second metal sulfide.
    Type: Application
    Filed: December 14, 2010
    Publication date: August 4, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Chris E. Kliewer, Stuart L. Soled, Sabato Miseo, Jeffrey S. Beck
  • Publication number: 20100314294
    Abstract: A hydrocarbon dehydrogenation process in which a hydrocarbon feed, normally a straight run naphtha, comprising acyclic and cyclic paraffins is dehydrogenated at elevated temperature of at least 540° C. with process heat provided at least in part by a solar or nuclear thermal energy source.
    Type: Application
    Filed: April 14, 2010
    Publication date: December 16, 2010
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael Siskin, Ramesh Varadaraj, Jeffrey S. Beck
  • Patent number: 7803276
    Abstract: This invention relates to a process for recycling acid used to remove nitrogen contaminants from hydrocarbons using polymeric membranes to separate spent acid from the acid extraction of hydrocarbons into acid for recycle and acid for regeneration.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: September 28, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Bhupender S. Minhas, Dennis G. Peiffer, Jeffrey S. Beck, David L. Stern, Tomas R. Melli
  • Publication number: 20090139900
    Abstract: This invention relates to a FCC process using a mesoporous catalytic cracking catalyst. The mesoporous fluidized catalytic cracking catalyst is selective for minimizing the production of coke and light gas. The catalyst comprises at least one amorphous, porous matrix, each matrix having pores ranging in diameter from about 1 ? to about 10 ? and pores ranging in diameter from about 40 ? to about 500 ?, wherein in the pore range from 50 ? to 250 ?, there is a single maximum in differential pore volume distribution over the 50 ? to 250 ? range.
    Type: Application
    Filed: February 3, 2009
    Publication date: June 4, 2009
    Inventors: William A. Wachter, Stephen J. McCathy, Jeffrey S. Beck, David L. Stern
  • Patent number: 7539880
    Abstract: An electronic circuit having built-in self testing capabilities for optimizing power consumption. Typically, the electronic circuit includes a component circuit that operates at some known or unknown optimal operating power level. Further, the electronic circuit includes a power supply coupled to the component circuit such that the power supply provides power to the component circuit. Further yet, the electronic circuit includes a test circuit coupled to the component circuit and coupled to the power supply. The test circuit is operable to monitor the power supplied to the component circuit and operable to control the power supply. In an iterative manner, the test circuit reduces the power supplied to the component circuit until the power supplied to the component circuit is operating at the optimal operating power level.
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: May 26, 2009
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Ray A. Mentzer, Jeffrey S. Beck
  • Patent number: 7504021
    Abstract: This invention relates to a FCC process using a mesoporous catalytic cracking catalyst. The mesoporous fluidized catalytic cracking catalyst is selective for minimizing the production of coke and light gas. The catalyst comprises at least one amorphous, porous matrix, each matrix having pores ranging in diameter from about 1 ? to about 10 ? and pores ranging in diameter from about 40 ? to about 500 ?, wherein in the pore range from 50 ? to 250 ?, there is a single maximum in differential pore volume distribution over the 50 ? to 250 ? range.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: March 17, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William A. Wachter, Stephen J. McCarthy, Jeffrey S. Beck, David L. Stern
  • Publication number: 20080237129
    Abstract: This invention relates to a process for recycling acid used to remove nitrogen contaminants from hydrocarbons using polymeric membranes to separate spent acid from the acid extraction of hydrocarbons into acid for recycle and acid for regeneration.
    Type: Application
    Filed: December 1, 2004
    Publication date: October 2, 2008
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Bhupender S. Minhas, Dennis G. Peiffer, Jeffrey S. Beck, David L. Stern, Tomas R. Melli
  • Patent number: 7238636
    Abstract: A method is disclosed for modifying a catalytic molecular sieve for shape-selective hydrocarbon conversions comprises: a) selectivating said catalytic molecular sieve by contacting with a silicon-containing selectivating agent; and b) calcining the selectivated catalytic molecular sieve at high temperature calcination conditions comprising temperatures greater than 700° C., which conditions are sufficient to reduce acid activity as measured by alpha value and increase diffusion barrier of said catalytic molecular sieve as measured by the rate of 2,3-dimethylbutane uptake, as compared to the selectivated catalyst. Catalytic molecular sieves thus prepared, such as silica-bound ZSM-5, and their use in hydrocarbon conversion processes such as aromatics isomerization, e.g., xylene isomerization, ethylbenzene conversion and aromatics disproportionation, e.g., toluene disproportionation are also disclosed.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: July 3, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jeffrey S. Beck, William G. Borghard, Arthur W. Chester, Carrie L. Kennedy, David L. Stern
  • Patent number: 6878654
    Abstract: The present invention provides a process for regenerating a spent aromatics alkylation or transalkylation catalyst comprising a molecular sieve by contacting the spent catalyst with an oxygen-containing gas at a temperature of about 120 to about 600° C. and then contacting the catalyst with an aqueous medium, such as an ammonium nitrate solution, an ammonium carbonate solution or an acid solution.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: April 12, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ajit B. Dandekar, Michael Hryniszak, Jeffrey S. Beck, David L. Stern, Kathleen M. Keville
  • Patent number: 6851786
    Abstract: A printer has a print head with multiple nozzles and firing elements for corresponding nozzles. The print head receives one or more power supply inputs to operate the firing elements. The print head has power supply fault protection circuitry to guard against harmful and destructive effects on firing resistors resulting from power supply fluctuations. The power supply fault protection circuitry is integrated into a pen-based chip that also forms the firing elements and optionally the firing logic.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: February 8, 2005
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jeffrey S. Beck, Adam L. Ghozeil
  • Publication number: 20040222157
    Abstract: A method for recovering acid from a feed mixture comprising acid, hydrocarbons and water, the method comprising:
    Type: Application
    Filed: February 6, 2004
    Publication date: November 11, 2004
    Inventors: Bhupender S. Minhas, Dennis G. Peiffer, Jorge L. Soto, David L. Stern, Tomas R. Melli, Jeffrey S. Beck, Steven Ackerman, David C. Dalrymple, Alexander D.S. Fremuth, Walter Weissman, Frederick J. Krambeck
  • Patent number: 6777583
    Abstract: There is provided a substantially binder-free catalytic molecular sieve which has been modified by being ex situ selectivated with a silicon compound. The ex situ selectivation involves exposing the molecular sieve to at least two silicon impregnation sequences, each sequence comprising an impregnation with a silicon compound followed by calcination. The catalyst may be used in a hydrocarbon conversion process, such as toluene disproportionation.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: August 17, 2004
    Assignee: ExxonMobil Oil Corporation
    Inventors: Jeffrey S. Beck, Jane C. Cheng, Sharon B. McCullen, David H. Olson, David L. Stern
  • Patent number: 6659581
    Abstract: An inkjet printhead assembly includes at least one inkjet printhead having nozzles and firing resisters. The inkjet printhead assembly includes fire pulse generator circuitry responsive to a start fire signal to generate fire signals, each having a series of fire pulses. The fire pulse generator circuitry generates the fire signals by controlling the initiation and duration of the fire pulses. The fire pulses control timing and activation of electrical current through the firing resisters to thereby control ejection of ink drops from the nozzles. One embodiment of the inkjet printhead assembly includes multiple printheads disposed on a carrier to form a wide-array inkjet printhead assembly.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: December 9, 2003
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Dennis J. Schloeman, Jeffrey S. Beck, Michael J. Barbour
  • Patent number: 6576582
    Abstract: There is provided a substantially binder-free catalytic molecular sieve which has been modified by being ex situ selectivated with a silicon compound. The ex situ selectivation involves exposing the molecular sieve to at least two silicon impregnation sequences, each sequence comprising an impregnation with a silicon compound followed by calcination. The catalyst may be used in a hydrocarbon conversion process, such as toluene disproportionation.
    Type: Grant
    Filed: November 15, 1995
    Date of Patent: June 10, 2003
    Assignee: ExxonMobil Oil Corporation
    Inventors: Jeffrey S. Beck, Jane C. Cheng, Sharon B. McCullen, David H. Olson, David L. Stern
  • Publication number: 20030055305
    Abstract: There is provided a substantially binder-free catalytic molecular sieve which has been modified by being ex situ selectivated with a silicon compound. The ex situ selectivation involves exposing the molecular sieve to at least two silicon impregnation sequences, each sequence comprising an impregnation with a silicon compound followed by calcination. The catalyst may be used in a hydrocarbon conversion process, such as toluene disproportionation.
    Type: Application
    Filed: August 26, 2002
    Publication date: March 20, 2003
    Inventors: Jeffrey S. Beck, Jane C. Cheng, Sharon B. McCullen, David H. Olson, David L. Stern
  • Publication number: 20030050521
    Abstract: The present invention provides a process for regenerating a spent aromatics alkylation or transalkylation catalyst comprising a molecular sieve by contacting the spent catalyst with an oxygen-containing gas at a temperature of about 120 to about 600° C. and then contacting the catalyst with an aqueous medium, such as an ammonium nitrate solution, an ammonium carbonate solution or an acid solution.
    Type: Application
    Filed: September 13, 2002
    Publication date: March 13, 2003
    Inventors: Ajit B. Dandekar, Michael Hryniszak, Jeffrey S. Beck, David L. Stern, Kathleen M. Keville
  • Publication number: 20030038058
    Abstract: This is a process for upgrading a petroleum naphtha fraction. The naphtha is subjected to reforming and the reformate is cascaded to a benzene and toluene synthesis zone over a benzene and toluene synthesis catalyst comprising a molecular sieve of low acid activity. The preferred molecular sieve is steamed ZSM-5. The benzene and toluene synthesis zone is operated under conditions compatible with the conditions of the reformer such as temperatures of above about 800° F. (427° C.). In one aspect on the invention, the benzene and toluene synthesis catalyst includes a metal hydrogenation component from group VII(B), specifically rhenium. In one mode of operation, the benzene and toluene synthesis catalyst replaces at least a portion of the catalyst in the reformer. The process produces a product containing an increased proportion of benzene, toluene, and/or xylenes, and a reduced portion of alkylated aromatics, as compared to reformate.
    Type: Application
    Filed: August 2, 2002
    Publication date: February 27, 2003
    Inventors: Madhav Acharya, Jeffrey S. Beck, Robert A. Crane, Arthur W. Chester, Vinaya A. Kapoor, Richard C. Kovacs, David L. Stern
  • Patent number: 6504075
    Abstract: A synthetic porous crystalline material has the structure of ZSM-5 and a composition involving the molar relationship: X2O3:(n)YO2, wherein X is a trivalent element; Y is a tetravalent element; and n is less than 25, and wherein the slope of the nitrogen sorption isotherm of the material at a partial pressure of nitrogen of 0.4 to 0.7 and a temperature 77° K is greater than 30. The material has a mesoporous surface area (MSA) greater than 45 m2/g and is useful as a catalyst in the liquid phase isomerization of xylene.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: January 7, 2003
    Assignee: ExxonMobil Oil Corporation
    Inventors: Jeffrey S. Beck, Carrie L. Kennedy, Wieslaw J. Roth, David L. Stern
  • Patent number: 6398947
    Abstract: The patent application discloses an integrated process for reformate upgrading. Such a process enables production of a high value product slate, by incorporating the step of reforming along with reaction/diffusion with a zeolite.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: June 4, 2002
    Assignee: Exxon Mobil Oil Corporation
    Inventors: Jeffrey S. Beck, Robert A. Crane, Jr., Vinaya A. Kapoor, David L. Stern, John H. Thurtell