Patents by Inventor Jeffrey S. Hrkach

Jeffrey S. Hrkach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6942868
    Abstract: Improved aerodynamically light particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the aerodynamically light particles are made of biodegradable material and have a tap density of less than 0.4 g/cm3 and a mass mean diameter between 5 ?m and 30 ?m. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear ?-hydroxy-acid polyester backbone having at least one amino acid group incorporated therein and at least one poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, aerodynamically light particles having a large mean diameter, for example greater than 5 ?m, can be used for enhanced delivery of a therapeutic agent to the alveolar region of the lung.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: September 13, 2005
    Assignees: Massachusetts Institute of Technology, The Penn State Research Foundation
    Inventors: David A. Edwards, Giovanni Caponetti, Jeffrey S. Hrkach, Noah Lotan, Justin Hanes, Abdellaziz Ben-Jebria, Robert S. Langer
  • Publication number: 20040191186
    Abstract: Improved porous particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the porous particles are made of a biodegradable material and have a mass density less than 0.4 g/cm3/. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear a-hydroxy-acid polyester backbone having at least one amino acid group incorporated therein and at least one poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, porous particles having a relatively large mean diameter, for example greater than 5 &mgr;m, can be used for enhanced delivery of a therapeutic agent to the alveolar region of the lung.
    Type: Application
    Filed: April 6, 2004
    Publication date: September 30, 2004
    Applicants: Massachusetts Institute of Technology, The Penn State Research Foundation
    Inventors: David A. Edwards, Giovanni Caponetti, Jeffrey S. Hrkach, Noah Lotan, Justin Hanes, Robert S. Langer, Abdellaziz Ben-Jebria
  • Patent number: 6740310
    Abstract: Improved porous particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the porous particles are made of a biodegradable material and have a mass density less than 0.4 g/cm3/. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear a-hydroxy-acid polyester backbone having at least one amino acid group incorporated therein and at least one poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, porous particles having a relatively large mean diameter, for example greater than 5 &mgr;m, can be used for enhanced delivery of a therapeutic agent to the alveolar region of the lung.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: May 25, 2004
    Assignees: Massachusetts Institute of Technology, The Penn State Research Foundation
    Inventors: David A. Edwards, Giovanni Caponetti, Jeffrey S. Hrkach, Noah Lotan, Justin Hanes, Robert S. Langer, Abdellaziz Ben-Jebria
  • Publication number: 20040076588
    Abstract: The present invention is directed toward particles for delivery of epinephrine to the respiratory system and methods for treating a patient in need of epinephrine. The particles and respirable compositions comprising the particles of the present invention described herein comprise the bioactive agent epinephrine, or a salt thereof, as a therapeutic agent. The particles are preferably formed by spray drying. Preferably, the particles and the respirable compositions are substantially dry and are substantially free of propellents. In a preferred embodiment, the particles have aerodynamic characteristics that permit targeted delivery of epinephrine to the site(s) of action.
    Type: Application
    Filed: June 26, 2003
    Publication date: April 22, 2004
    Inventors: Richard P. Batycky, Giovanni Caponetti, Mariko Childs, Elliot Ehrich, Karen Fu, Jeffrey S. Hrkach, Wen-I Li, Michael M. Lipp, Mei-Ling Pan, Jason Summa
  • Publication number: 20040047811
    Abstract: Improved aerodynamically light particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the aerodynamically light particles are made of biodegradable material and have a tap density of less than 0.4 g/cm3 and a mass mean diameter between 5 &mgr;m and 30 &mgr;m. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear &agr;-hydroxy-acid polyester backbone having at least one amino acid group incorporated therein and at least one poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, aerodynamically light particles having a large mean diameter, for example greater than 5 &mgr;m, can be used for enhanced delivery of a therapeutic agent to the alveolar region of the lung.
    Type: Application
    Filed: May 20, 2003
    Publication date: March 11, 2004
    Applicants: The Penn State Research Foundation, Massachusetts Institute of Technology
    Inventors: David A. Edwards, Giovanni Caponetti, Jeffrey S. Hrkach, Noah Lotan, Justin Hanes, Abdellaziz Ben-Jebria, Robert S. Langer
  • Publication number: 20040018243
    Abstract: Particles which include a bioactive agent are prepared to have a desired matrix transition temperature. Delivery of the particles via the pulmonary system results in modulation of drug release from the particles. Sustained release of the drug can be obtained by forming particles which have a high matrix transition temperature, while fast release can be obtained by forming particles which have a low matrix transition temperature. Preferred particles include one or more phospholipids.
    Type: Application
    Filed: April 28, 2003
    Publication date: January 29, 2004
    Applicant: Advanced Inhalation Research, Inc.
    Inventors: Sujit K. Basu, Jeffrey S. Hrkach, Giovanni Caponetti, Michael M. Lipp, Katharina Elbert, Wen-I Li
  • Patent number: 6635283
    Abstract: Improved aerodynamically light particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the aerodynamically light particles are made of biodegradable material and have a tap density of less than 0.4 g/cm3 and a mass mean diameter between 5 &mgr;m and 30 &mgr;m. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear &agr;-hydroxy-acid polyester backbone having at least one amino acid group incorporated therein and at least one poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, aerodynamically light particles having a large mean diameter, for example greater than 5 &mgr;m, can be used for enhanced delivery of a therapeutic agent to the alveolar region of the lung.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: October 21, 2003
    Inventors: David A. Edwards, Giovanni Caponetti, Jeffrey S. Hrkach, Noah Lotan, Justin Hanes, Abdellaziz Ben-Jebria, Robert S. Langer
  • Publication number: 20030166509
    Abstract: The present invention features pharmaceutical compositions comprising nanoparticles containing a sustained release bioactive agent, method of making such compositions, and method of therapy using such compositions.
    Type: Application
    Filed: November 20, 2002
    Publication date: September 4, 2003
    Applicant: Advanced Inhalation Research, Inc.
    Inventors: David A. Edwards, Richard P. Batycky, Jennifer L. Schmitke, Nicolas Tsapis, David A. Weitz, Jeffrey S. Hrkach
  • Publication number: 20030012742
    Abstract: Improved porous particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the porous particles are made of a biodegradable material and have a mass density less than 0.4 g/cm3/. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear a-hydroxy-acid polyester backbone having at least one amino acid group incorporated therein and at least one poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, porous particles having a relatively large mean diameter, for example greater than 5 &mgr;m, can be used for enhanced delivery of a therapeutic agent to the alveolar region of the lung.
    Type: Application
    Filed: July 30, 2002
    Publication date: January 16, 2003
    Applicant: The Penn Research Foundation, Inc.
    Inventors: David A. Edwards, Giovanni Caponetti, Jeffrey S. Hrkach, Noah Lotan, Justin Hanes, Robert S. Langer, Abdellaziz Ben-Jebria
  • Patent number: 6503480
    Abstract: Improved aerodynamically light particles for delivery to the pulmonary system, and methods for their preparation and administration are provided. In a preferred embodiment, the aerodynamically light particles are made of a biodegradable material and have a tap density less than 0.4 g/cm3 and a mass mean diameter between 5 &mgr;m and 30 &mgr;m. The particles may be formed of biodegradable mat as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear &agr;-hydroxy-acid polyester backbone having at least one amino acid group incorporated therein and at least one poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, aerodynamically light particles having a large mean diameter, for example greater than 5 &mgr;m, can be used for enhanced delivery of a therapeutic or diagnostic agent to the alveolar region of the lung.
    Type: Grant
    Filed: April 8, 1999
    Date of Patent: January 7, 2003
    Assignees: Massachusetts Institute of Technology, The Penn State Research Foundation
    Inventors: David A. Edwards, Giovannia Caponetti, Jeffrey S. Hrkach, Noah Lotan, Justin Hanes, Abdell Aziz Ben-Jebria, Robert S. Langer
  • Publication number: 20020146373
    Abstract: Improved aerodynamically light particles for delivery to the pulmonary system, and methods for their preparation and administration are provided. In a preferred embodiment, the aerodynamically light particles are made of a biodegradable material and have a tap density less than 0.4 g/cm3 and a mass mean diameter between 5 &mgr;m and 30 &mgr;m. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear &agr;-hydroxy-acid polyester backbone having at least one amino acid group incorporated herein and at least on poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, aerodynamically light particles having a large mean diameter, for example greater than 5 &mgr;m, can be used for enhanced delivery of a therapeutic or diagnostic agent to the alveolar region of the lung.
    Type: Application
    Filed: March 1, 2002
    Publication date: October 10, 2002
    Applicant: The Penn State Research Foundation
    Inventors: David A. Edwards, Giovanni Caponetti, Jeffrey S. Hrkach, Noah Lotan, Justin Hanes, Abdellaziz Ben-Jebria, Robert S. Langer
  • Publication number: 20020141946
    Abstract: The invention generally relates to formulations having particles comprising phospholipids, bioactive agent and excipients and the pulmonary delivery thereof. Dry powder inhaled insulin formulations are disclosed. Formulations comprising DPPC, insulin and sodium citrate which are useful in the treatment of diabetes are disclosed. Also, the invention relates to a method of for the pulmonary delivery of a bioactive agent comprising administering to the respiratory tract of a patient in need of treatment, or diagnosis an effective amount of particles comprising a bioactive agent or any combination thereof in association, wherein release of the agent from the administered particles occurs in a rapid fashion.
    Type: Application
    Filed: June 22, 2001
    Publication date: October 3, 2002
    Applicant: Advanced Inhalation Research, Inc.
    Inventors: Jennifer L. Schmitke, Donghao Chen, Richard P. Batycky, David A. Edwards, Jeffrey S. Hrkach
  • Publication number: 20020141947
    Abstract: Improved aerodynamically light particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the aerodynamically light particles are made of biodegradable material and have a tap density of less than 0.4 g/cm3 and a mass mean diameter between 5 &mgr;m and 30 &mgr;m. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear &agr;-hydroxy-acid polyester backbone having at least one amino acid group incorporated therein and at least one poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, aerodynamically light particles having a large mean diameter, for example greater than 5 &mgr;m, can be used for enhanced delivery of a therapeutic agent to the alveolar region of the lung.
    Type: Application
    Filed: December 20, 2001
    Publication date: October 3, 2002
    Inventors: David A. Edwards, Giovanni Caponetti, Jeffrey S. Hrkach, Noah Lotan, Justin Hanes, Abdellaziz Ben-Jebria, Robert S. Langer
  • Patent number: 6447752
    Abstract: Improved porous particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the porous particles are made of a biodegradable material and have a mass density less than 0.4 g/cm3/. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear &agr;-hydroxy-acid polyester backbone having at least one amino acid group incorporated therein and at least one poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, porous particles having a relatively large mean diameter, for example greater than 5 &mgr;m, can be used for enhanced delivery of a therapeutic agent to the alveolar region of the lung.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: September 10, 2002
    Assignees: The Penn State Research Foundation, Massachusetts Institute of Technology
    Inventors: David A. Edwards, Giovanni Caponetti, Jeffrey S. Hrkach, Noah Lotan, Justin Hanes, Robert S. Langer, Abdellaziz Ben-Jebria
  • Patent number: 6447753
    Abstract: Improved porous particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the porous particles are made of a biodegradable material and have a mass density less than 0.4 g/cm3/. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear &agr;-hydroxy-acid polyester backbone having at least one amino acid group incorporated therein and at least one poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, porous particles having a relatively large mean diameter, for example greater than 5 &mgr;m, can be used for enhanced delivery of a therapeutic agent to the alveolar region of the lung.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: September 10, 2002
    Assignees: The Penn Research Foundation, Inc., Massachusetts Institute of Technology
    Inventors: David A. Edwards, Giovanni Caponetti, Jeffrey S. Hrkach, Noah Lotan, Justin Hanes, Robert S. Langer, Abdellaziz Ben-Jebria
  • Patent number: 6436443
    Abstract: Improved porous particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the porous particles are made of a biodegradable material and have a mass density less than 0.4 g/cm3/. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear &agr;-hydroxy-acid polyester backbone having at least one amino acid group incorporated therein and at least one poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, porous particles having a relatively large mean diameter, for example greater than 5 &mgr;m, can be used for enhanced delivery of a therapeutic agent to the alveolar region of the lung.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: August 20, 2002
    Assignees: The Penn Research Foundation, Inc., Massachesetts Institute of Technology
    Inventors: David A. Edwards, Giovanni Caponetti, Jeffrey S. Hrkach, Noah Lotan, Justin Hanes, Robert S. Langer, Abdellaziz Ben-Jebria
  • Patent number: 6399102
    Abstract: Improved aerodynamically light particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the aerodynamically light particles are made of biodegradable material and have a tap density of less than 0.4 g/cm3 and a mass mean diameter between 5 &mgr;m and 30 &mgr;m. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear &agr;-hydroxy-acid polyester backbone having at least one amino acid group incorporated therein and at least one poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, aerodynamically light particles having a large mean diameter, for example greater than 5 &mgr;m, can be used for enhanced delivery of a therapeutic agent to the alveolar region of the lung.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: June 4, 2002
    Assignee: The Penn State Research Foundation
    Inventors: David A. Edwards, Giovanni Caponetti, Jeffrey S. Hrkach, Noah Lotan, Justin Hanes, Abdellaziz Ben-Jebria, Robert S. Langer
  • Publication number: 20020034477
    Abstract: The invention generally relates to a method for pulmonary delivery of therapeutic, prophylactic and diagnostic agents to a patient wherein the agent is released in a sustained fashion, and to particles suitable for use in the method. In particular, the invention relates to a method for the pulmonary delivery of a therapeutic, prophylactic or diagnostic agent comprising administering to the respiratory tract of a patient in need of treatment, prophylaxis or diagnosis an effective amount of particles comprising a multivalent metal cation which is complexed with a therapeutic, prophylactic or diagnostic agent or any combination thereof having a charge capable of complexing with the cation upon association with the agent, a pharmaceutically acceptable carrier and optionally, a multivalent metal cation-containing component wherein the total amount of multivalent metal cation present in the particles is more than 1% weight/weight of the total weight of the agent (% w/w).
    Type: Application
    Filed: March 30, 2001
    Publication date: March 21, 2002
    Applicant: Advanced Inhalation Research Inc.
    Inventors: David A. Edwards, Jeffrey S. Hrkach
  • Publication number: 20010036481
    Abstract: Particles which include a bioactive agent are prepared to have a desired matrix transition temperature. Delivery of the particles via the pulmonary system results in modulation of drug release from the particles. Sustained release and/or sustained pharmacologic action of the drug can be obtained by forming particles which include a combination of phospholipids that are miscible in one another and have a high matrix transition temperature.
    Type: Application
    Filed: February 23, 2001
    Publication date: November 1, 2001
    Applicant: Advanced Inhalation Research, Inc.
    Inventors: Sujit K. Basu, Giovanni Caponetti, Daniel R. Deaver, Katharina J. Elbert, Jeffrey S. Hrkach, Michael M. Lipp
  • Publication number: 20010033828
    Abstract: Improved porous particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the porous particles are made of a biodegradable material and have a mass density less than 0.4 g/cm3/. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of a functionalized polyester graft copolymer consisting of a linear &agr;-hydroxy-acid polyester backbone having at least one amino acid group incorporated therein and at least one poly(amino acid) side chain extending from an amino acid group in the polyester backbone. In one embodiment, porous particles having a relatively large mean diameter, for example greater than 5 &mgr;m, can be used for enhanced delivery of a therapeutic agent to the alveolar region of the lung.
    Type: Application
    Filed: June 25, 2001
    Publication date: October 25, 2001
    Applicant: The Penn Research Foundation, Inc.
    Inventors: David A. Edwards, Giovanni Caponetti, Jeffrey S. Hrkach, Noah Lotan, Justin Hanes, Robert S. Langer, Abdellaziz Ben-Jebria