Patents by Inventor Jeffrey S. McDaniel

Jeffrey S. McDaniel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11954379
    Abstract: The location of a printing device is determined. Environmental conditions in which the printing device operated when printing a print job are determined based on the determined location. An environmental adjustment factor for the printing device is determined based on the determined environmental conditions. A predicted print material usage of the printing device in printing the print job is adjusted based on the determined environmental adjustment factor.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: April 9, 2024
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jeffrey H. Luke, Gabriel S. McDaniel, Scott K. Hymas
  • Patent number: 11927909
    Abstract: An image forming apparatus includes a development cartridge having a developing roller. A coupler for the image forming apparatus includes a shaft and a coupling structure to rotate the developing roller. The coupling structure is disposed at an end part of the shaft, is movable along an axial direction of the shaft and coupleable with another coupling structure of a print engine of the image forming apparatus. The coupling structure includes a body, a magnet disposed in the body to cause the coupling structure to be attracted to the another coupling structure so that the coupling structure is aligned with the another coupling structure, and a plurality of protrusions which protrude from the body in the axial direction to engage with the another coupling structure, the plurality of protrusions having at least one side with an inclined face.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: March 12, 2024
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Elizabeth A. Swanson, Gabriel S. McDaniel, Jeffrey H. Luke
  • Patent number: 11927905
    Abstract: In response to detecting that a remaining supply of print material of a first cartridge has reached a first threshold, a printing device transmits a request. In response to detecting that a second cartridge has replaced the first cartridge, the printing device determines whether the remaining supply had reached a second threshold and whether a token permitting usage of the second cartridge was received responsive to the request. In response to determining that the remaining supply had reached the second threshold and that the token was received, the printing device prints with print material from the second cartridge.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: March 12, 2024
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jeffrey H. Luke, Gabriel S. McDaniel, Scott K Hymas
  • Publication number: 20240070421
    Abstract: The number of days until a consumable item of a printing device reaches end of life is predicted based on a usage scenario of the printing device. An expected fulfillment time period is subtracted from the predicted number of days to determine a number of days until a fulfillment event occurs. A threshold remaining life of the consumable item is correlated with the number of days until the fulfillment event occurs. That the remaining life of the consumable item has reached the threshold remaining life is detected, and fulfillment of a replacement consumable item to replace the consumable item is responsively initiated.
    Type: Application
    Filed: January 15, 2021
    Publication date: February 29, 2024
    Inventors: Scott K. Hymas, Jeffrey H. Luke, Gabriel S. McDaniel
  • Patent number: 9108904
    Abstract: This invention relates to a process for converting a hydrocarbon reactant to a product comprising an oxygenate or a nitrile, the process comprising: (A) flowing a reactant composition comprising the hydrocarbon reactant, and oxygen or a source of oxygen, and optionally ammonia, through a microchannel reactor in contact with a catalyst to convert the hydrocarbon reactant to the product, the hydrocarbon reactant undergoing an exothermic reaction in the microchannel reactor; (B) transferring heat from the microchannel reactor to a heat exchanger during step (A); and (C) quenching the product from step (A).
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: August 18, 2015
    Assignee: Velocys, Inc.
    Inventors: John H. Brophy, Frederick A. Pesa, Anna Lee Tonkovich, Jeffrey S. McDaniel, Kai Tod Paul Jarosch
  • Patent number: 8100996
    Abstract: This invention relates to a process for converting a carbonaceous material to a desired product comprising one or more hydrocarbons or one or more alcohols, the process comprising: (A) gasifying the carbonaceous material at a temperature in excess of about 700° C. to form synthesis gas; and (B) flowing the synthesis gas in a microchannel reactor in contact with a catalyst to convert the synthesis gas to the desired product.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: January 24, 2012
    Assignee: Velocys, Inc.
    Inventors: Wayne W. Simmons, Robert Dwayne Litt, Anna Lee Tonkovich, Laura J. Silva, Daniel Francis Ryan, Bruce Stangeland, John Brophy, Jeffrey S. McDaniel
  • Publication number: 20090293359
    Abstract: This invention relates to a process for converting a carbonaceous material to a desired product comprising one or more hydrocarbons or one or more alcohols, the process comprising: (A) gasifying the carbonaceous material at a temperature in excess of about 700° C. to form synthesis gas; and (B) flowing the synthesis gas in a microchannel reactor in contact with a catalyst to convert the synthesis gas to the desired product.
    Type: Application
    Filed: April 9, 2009
    Publication date: December 3, 2009
    Inventors: Wayne W. Simmons, Robert Dwayne Litt, Anna Lee Tonkovich, Laura J. Silva, Daniel Francis Ryan, Bruce Stangeland, John Brophy, Jeffrey S. McDaniel
  • Patent number: 7507274
    Abstract: The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: March 24, 2009
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Steven T. Perry, Ravi Arora, Dongming Qiu, Michael Jay Lamont, Deanna Burwell, Terence Andrew Dritz, Jeffrey S. McDaniel, William A. Rogers, Jr., Laura J. Silva, Daniel J. Weidert, Wayne W. Simmons, G. Bradley Chadwell
  • Patent number: 7294734
    Abstract: This invention relates to a process for converting a hydrocarbon reactant to a product comprising an oxygenate or a nitrile, the process comprising: (A) flowing a reactant composition comprising the hydrocarbon reactant, and oxygen or a source of oxygen, and optionally ammonia, through a microchannel reactor in contact with a catalyst to convert the hydrocarbon reactant to the product, the hydrocarbon reactant undergoing an exothermic reaction in the microchannel reactor; (B) transferring heat from the microchannel reactor to a heat exchanger during step (A); and (C) quenching the product from step (A).
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: November 13, 2007
    Assignee: Velocys, Inc.
    Inventors: John H. Brophy, Frederick A. Pesa, Anna Lee Tonkovich, Jeffrey S. McDaniel, Kai Tod Paul Jarosch
  • Patent number: 7000427
    Abstract: This invention relates to a process for cooling or liquefying a fluid product (e.g., natural gas) in a heat exchanger, the process comprising: flowing a fluid refrigerant through a set of refrigerant microchannels in the heat exchanger; and flowing the product through a set of product microchannels in the heat exchanger, the product flowing through the product microchannels exchanging heat with the refrigerant flowing through the refrigerant microchannels, the product exiting the set of product microchannels being cooler than the product entering the set of product microchannels. The process has a wide range of applications, including liquefying natural gas.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: February 21, 2006
    Assignee: Velocys, Inc.
    Inventors: James A. Mathias, Ravi Arora, Wayne W. Simmons, Jeffrey S. McDaniel, Anna Lee Tonkovich, William A. Krause, Laura J. Silva, Dongming Qiu
  • Patent number: 6824592
    Abstract: The present invention provides apparatus and methods for separating hydrogen. In preferred embodiments, the apparatus and methods utilize microchannel devices with small distances for heat and mass transfer to achieve rapid cycle times and surprisingly large volumes of hydrogen separated in short times using relatively compact hardware.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: November 30, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Bruce F. Monzyk, Anna Lee Y. Tonkovich, Yong Wang, David P. VanderWiel, Steven T. Perry, Sean P. Fitzgerald, Wayne W. Simmons, Jeffrey S. McDaniel, Albert E. Weller, Jr., Chad M. Cucksey
  • Patent number: 6814781
    Abstract: The present invention provides apparatus and methods for separating fluid components. In preferred embodiments, the apparatus and methods utilize microchannel devices with small distances for heat and mass transfer to achieve rapid cycle times and surprisingly large volumes of fluid components separated in short times using relatively compact hardware.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: November 9, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Bruce F. Monzyk, Yong Wang, David P. VanderWiel, Steven T. Perry, Sean P. Fitzgerald, Wayne W. Simmons, Jeffrey S. McDaniel, Albert E. Weller, Jr.
  • Publication number: 20040220434
    Abstract: This invention relates to a process for converting a hydrocarbon reactant to a product comprising an oxygenate or a nitrile, the process comprising: (A) flowing a reactant composition comprising the hydrocarbon reactant, and oxygen or a source of oxygen, and optionally ammonia, through a microchannel reactor in contact with a catalyst to convert the hydrocarbon reactant to the product, the hydrocarbon reactant undergoing an exothermic reaction in the microchannel reactor; (B) transferring heat from the microchannel reactor to a heat exchanger during step (A); and (C) quenching the product from step (A).
    Type: Application
    Filed: May 2, 2003
    Publication date: November 4, 2004
    Inventors: John H. Brophy, Frederick A. Pesa, Anna Lee Tonkovich, Jeffrey S. McDaniel, Kai Tod Paul Jarosch
  • Publication number: 20040055329
    Abstract: This invention relates to a process for cooling or liquefying a fluid product (e.g., natural gas) in a heat exchanger, the process comprising: flowing a fluid refrigerant through a set of refrigerant microchannels in the heat exchanger; and flowing the product through a set of product microchannels in the heat exchanger, the product flowing through the product microchannels exchanging heat with the refrigerant flowing through the refrigerant microchannels, the product exiting the set of product microchannels being cooler than the product entering the set of product microchannels. The process has a wide range of applications, including liquefying natural gas.
    Type: Application
    Filed: August 8, 2003
    Publication date: March 25, 2004
    Inventors: James A. Mathias, Ravi Arora, Wayne W. Simmons, Jeffrey S. McDaniel, Anna Lee Tonkovich, William A. Krause, Laura J. Silva, Dongming Qiu
  • Patent number: 6622519
    Abstract: This invention relates to a process for cooling a product in a heat exchanger, the process comprising: flowing a refrigerant through a set of first microchannels in the heat exchanger; flowing a refrigerant through a set of second microchannels in the heat exchanger, the refrigerant flowing through the set of second microchannels being at a lower temperature, a lower pressure or both a lower temperature and a lower pressure than the refrigerant flowing through the set of first microchannels; and flowing a product through a set of third microchannels in the heat exchanger, the product exiting the set of third microchannels having a cooler temperature than the product entering the set of third microchannels. This process is suitable for liquefying gaseous products including natural gas.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: September 23, 2003
    Assignee: Velocys, Inc.
    Inventors: James A. Mathias, Ravi Arora, Wayne W. Simmons, Jeffrey S. McDaniel, Anna Lee Tonkovich, William A. Krause, Laura J. Silva
  • Publication number: 20030131729
    Abstract: The present invention provides apparatus and methods for separating fluid components. In preferred embodiments, the apparatus and methods utilize microchannel devices with small distances for heat and mass transfer to achieve rapid cycle times and surprisingly large volumes of fluid components separated in short times using relatively compact hardware.
    Type: Application
    Filed: November 4, 2002
    Publication date: July 17, 2003
    Inventors: Anna Lee Y. Tonkovich, Bruce F. Monzyk, Yong Wang, David P. VanderWiel, Steven T. Perry, Sean P. Fitzgerald, Wayne W. Simmons, Jeffrey S. McDaniel, Albert E. Weller
  • Publication number: 20030116016
    Abstract: The present invention provides apparatus and methods for separating hydrogen. In preferred embodiments, the apparatus and methods utilize microchannel devices with small distances for heat and mass transfer to achieve rapid cycle times and surprisingly large volumes of hydrogen separated in short times using relatively compact hardware.
    Type: Application
    Filed: November 15, 2002
    Publication date: June 26, 2003
    Inventors: Bruce F. Monzyk, Anna Lee Y. Tonkovich, Yong Wang, David P. VanderWiel, Steven T. Perry, Sean P. Fitzgerald, Wayne W. Simmons, Jeffrey S. McDaniel, Albert E. Weller, Chad M. Cucksey
  • Patent number: 6508862
    Abstract: The present invention provides apparatus and methods for separating fluid components. In preferred embodiments, the apparatus and methods utilize microchannel devices with small distances for heat and mass transfer to achieve rapid cycle times and surprisingly large volumes of fluid components separated in short times using relatively compact hardware.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: January 21, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Bruce F. Monzyk, Yong Wang, David P. VanderWiel, Steven T. Perry, Sean P. Fitzgerald, Wayne W. Simmons, Jeffrey S. McDaniel, Albert E. Weller, Jr.
  • Patent number: 6503298
    Abstract: The present invention provides apparatus and methods for separating hydrogen. In preferred embodiments, the apparatus and methods utilize microchannel devices with small distances for heat and mass transfer to achieve rapid cycle times and surprisingly large volumes of hydrogen separated in short times using relatively compact hardware.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: January 7, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Bruce F. Monzyk, Anna Lee Y. Tonkovich, Yong Wang, David P. VanderWiel, Steven T. Perry, Sean P. Fitzgerald, Wayne W. Simmons, Jeffrey S. McDaniel, Albert E. Weller, Jr., Chad M. Cucksey