Patents by Inventor Jeffrey S. Scott

Jeffrey S. Scott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10244190
    Abstract: Techniques using small form factor infrared imaging modules are disclosed. An imaging system may include visible spectrum imaging modules, infrared imaging modules, illumination modules, and other modules to interface with a user and/or a monitoring system. Visible spectrum imaging modules and infrared imaging modules may be positioned in proximity to a scene that will be monitored while visible spectrum-only images of the scene are either not available or less desirable than infrared images of the scene. Imaging modules may be configured to capture images of the scene at different times. Image analytics and processing may be used to generate combined images with infrared imaging features and increased detail and contrast. Selectable aspects of non-uniformity correction processing, true color processing, and high contrast processing, may be performed on the captured images. Control signals based on the combined images may be presented to a user and/or a monitoring system.
    Type: Grant
    Filed: December 21, 2013
    Date of Patent: March 26, 2019
    Assignee: FLIR Systems, Inc.
    Inventors: Pierre Boulanger, Barbara Sharp, Theodore R. Hoelter, Andrew C. Teich, Nicholas Högasten, Jeffrey S. Scott, Katrin Strademar, Mark Nussmeier, Eric A. Kurth
  • Patent number: 10033944
    Abstract: Techniques using small form factor infrared imaging modules are disclosed. An imaging system may include visible spectrum imaging modules, infrared imaging modules, and other modules to interface with a user and/or a monitoring system. Visible spectrum imaging modules and infrared imaging modules may be positioned in proximity to a scene that will be monitored while visible spectrum-only images of the scene are either not available or less desirable than infrared images of the scene. Imaging modules may be configured to capture images of the scene at different times. Image analytics and processing may be used to generate combined images with infrared imaging features and increased detail and contrast. Triple fusion processing, including selectable aspects of non-uniformity correction processing, true color processing, and high contrast processing, may be performed on the captured images. Control signals based on the combined images may be presented to a user and/or a monitoring system.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: July 24, 2018
    Assignee: FLIR Systems, Inc.
    Inventors: Nicholas Högasten, Dwight Dumpert, Theodore R. Hoelter, Jeffrey S. Scott, Katrin Strandemar, Mark Nussmeier, Eric A. Kurth, Pierre Boulanger, Barbara Sharp
  • Patent number: 9635285
    Abstract: Techniques using small form factor infrared imaging modules are disclosed. An imaging system may include visible spectrum imaging modules, infrared imaging modules, and other modules to interface with a user and/or a monitoring system. Visible spectrum imaging modules and infrared imaging modules may be positioned in proximity to a scene that will be monitored while visible spectrum-only images of the scene are either not available or less desirable than infrared images of the scene. Imaging modules may be configured to capture images of the scene at different times. Image analytics and processing may be used to generate combined images with infrared imaging features and increased detail and contrast. Triple fusion processing, including selectable aspects of non-uniformity correction processing, true color processing, and high contrast processing, may be performed on the captured images. Control signals based on the combined images may be presented to a user and/or a monitoring system.
    Type: Grant
    Filed: December 21, 2013
    Date of Patent: April 25, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Andrew C. Teich, Nicholas Högasten, Jeffrey S. Scott, Katrin Strandemar, Mark Nussmeier, Eric A. Kurth, Theodore R. Hoelter, Pierre Boulanger, Barbara Sharp
  • Publication number: 20170078590
    Abstract: Techniques using small form factor infrared imaging modules are disclosed. An imaging system may include visible spectrum imaging modules, infrared imaging modules, and other modules to interface with a user and/or a monitoring system. Visible spectrum imaging modules and infrared imaging modules may be positioned in proximity to a scene that will be monitored while visible spectrum-only images of the scene are either not available or less desirable than infrared images of the scene. Imaging modules may be configured to capture images of the scene at different times. Image analytics and processing may be used to generate combined images with infrared imaging features and increased detail and contrast. Triple fusion processing, including selectable aspects of non-uniformity correction processing, true color processing, and high contrast processing, may be performed on the captured images. Control signals based on the combined images may be presented to a user and/or a monitoring system.
    Type: Application
    Filed: September 19, 2016
    Publication date: March 16, 2017
    Inventors: Nicholas Högasten, Dwight Dumpert, Theodore R. Hoelter, Jeffrey S. Scott, Katrin Strandemar, Mark Nussmeier, Eric A. Kurth, Pierre Boulanger, Barbara Sharp
  • Patent number: 9451183
    Abstract: Techniques using small form factor infrared imaging modules are disclosed. An imaging system may include visible spectrum imaging modules, infrared imaging modules, and other modules to interface with a user and/or a monitoring system. Visible spectrum imaging modules and infrared imaging modules may be positioned in proximity to a scene that will be monitored while visible spectrum-only images of the scene are either not available or less desirable than infrared images of the scene. Imaging modules may be configured to capture images of the scene at different times. Image analytics and processing may be used to generate combined images with infrared imaging features and increased detail and contrast. Triple fusion processing, including selectable aspects of non-uniformity correction processing, true color processing, and high contrast processing, may be performed on the captured images. Control signals based on the combined images may be presented to a user and/or a monitoring system.
    Type: Grant
    Filed: December 21, 2013
    Date of Patent: September 20, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: Nicholas Högasten, Dwight Dumpert, Theodore R. Hoelter, Jeffrey S. Scott, Katrin Strandemar, Mark Nussmeier, Eric A. Kurth, Pierre Boulanger, Barbara Sharp
  • Publication number: 20150358560
    Abstract: Techniques using small form factor infrared imaging modules are disclosed. An imaging system may include visible spectrum imaging modules, infrared imaging modules, illumination modules, and other modules to interface with a user and/or a monitoring system. Visible spectrum imaging modules and infrared imaging modules may be positioned in proximity to a scene that will be monitored while visible spectrum-only images of the scene are either not available or less desirable than infrared images of the scene. Imaging modules may be configured to capture images of the scene at different times. Image analytics and processing may be used to generate combined images with infrared imaging features and increased detail and contrast. Selectable aspects of non-uniformity correction processing, true color processing, and high contrast processing, may be performed on the captured images. Control signals based on the combined images may be presented to a user and/or a monitoring system.
    Type: Application
    Filed: December 21, 2013
    Publication date: December 10, 2015
    Applicant: FLIR Systems, Inc.
    Inventors: Pierre Boulanger, Barbara Sharp, Theodore R. Hoelter, Andrew C. Teich, Nicholas Högasten, Jeffrey S. Scott, Katrin Strademar, Mark Nussmeier, Eric A. Kurth
  • Publication number: 20150334315
    Abstract: Techniques using small form factor infrared imaging modules are disclosed. An imaging system may include visible spectrum imaging modules, infrared imaging modules, and other modules to interface with a user and/or a monitoring system. Visible spectrum imaging modules and infrared imaging modules may be positioned in proximity to a scene that will be monitored while visible spectrum-only images of the scene are either not available or less desirable than infrared images of the scene. Imaging modules may be configured to capture images of the scene at different times. Image analytics and processing may be used to generate combined images with infrared imaging features and increased detail and contrast. Triple fusion processing, including selectable aspects of non-uniformity correction processing, true color processing, and high contrast processing, may be performed on the captured images. Control signals based on the combined images may be presented to a user and/or a monitoring system.
    Type: Application
    Filed: December 21, 2013
    Publication date: November 19, 2015
    Applicant: FLIR Systems, Inc.
    Inventors: Andrew C. Teich, Nicholas Högasten, Jeffrey S. Scott, Katrin Strandemar, Mark Nussmeier, Eric A. Kurth, Theodore R. Hoelter, Pierre Boulanger, Barbara Sharp
  • Patent number: 9083897
    Abstract: Systems and methods disclosed herein provide for infrared camera systems and methods for dual sensor applications. For example, in one embodiment, an enhanced vision system comprises an image capture component having a visible light sensor to capture visible light images and an infrared sensor to capture infrared images. The system comprises a first control component adapted to provide a plurality of selectable processing modes to a user, receive a user input corresponding to a user selected processing mode, and generate a control signal indicative of the user selected processing mode, wherein the plurality of selectable processing modes includes a visible light only mode, infrared only mode, and a combined visible-infrared mode.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: July 14, 2015
    Assignee: FLIR Systems, Inc.
    Inventors: Nicholas Högasten, Jeffrey S. Scott, Patrick B. Richardson, Jeffrey D. Frank, Austin A. Richards, James T. Woolaway
  • Patent number: 8860800
    Abstract: A boresight alignment system facilitates aligning a plurality of cameras and/or images of the cameras with respect to one another. The system may have a mount configured to facilitate attachment of a bezel containing a plurality of cameras to the mount. The system may have a plurality of targets and each target may be configured to provide light of at least two different wavelengths and/or ranges of wavelengths. One or more baffles may be disposed optically between the mount and the target assembly to inhibit stray light from being incident upon the cameras.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: October 14, 2014
    Assignee: FLIR Systems, Inc.
    Inventors: Marco A. Scussat, Richard M. Goeden, Jeffrey S. Scott, Richard G. Lane, Gary B. Hughes
  • Publication number: 20140285672
    Abstract: Systems and methods disclosed herein provide for infrared camera systems and methods for dual sensor applications. For example, in one embodiment, an enhanced vision system comprises an image capture component having a visible light sensor to capture visible light images and an infrared sensor to capture infrared images. The system comprises a first control component adapted to provide a plurality of selectable processing modes to a user, receive a user input corresponding to a user selected processing mode, and generate a control signal indicative of the user selected processing mode, wherein the plurality of selectable processing modes includes a visible light only mode, infrared only mode, and a combined visible-infrared mode.
    Type: Application
    Filed: June 9, 2014
    Publication date: September 25, 2014
    Inventors: Nicholas Högasten, Jeffrey S. Scott, Patrick B. Richardson, Jeffrey D. Frank, Austin A. Richards, James T. Woolaway
  • Publication number: 20140240512
    Abstract: Techniques using small form factor infrared imaging modules are disclosed. An imaging system may include visible spectrum imaging modules, infrared imaging modules, and other modules to interface with a user and/or a monitoring system. Visible spectrum imaging modules and infrared imaging modules may be positioned in proximity to a scene that will be monitored while visible spectrum-only images of the scene are either not available or less desirable than infrared images of the scene. Imaging modules may be configured to capture images of the scene at different times. Image analytics and processing may be used to generate combined images with infrared imaging features and increased detail and contrast. Triple fusion processing, including selectable aspects of non-uniformity correction processing, true color processing, and high contrast processing, may be performed on the captured images. Control signals based on the combined images may be presented to a user and/or a monitoring system.
    Type: Application
    Filed: December 21, 2013
    Publication date: August 28, 2014
    Applicant: FLIR Systems, Inc.
    Inventors: Nicholas Högasten, Dwight Dumpert, Theodore R. Hoelter, Jeffrey S. Scott, Katrin Strandemar, Mark Nussmeier, Eric A. Kurth, Pierre Boulanger, Barbara Sharp
  • Patent number: 8749635
    Abstract: Systems and methods disclosed herein provide for infrared camera systems and methods for dual sensor applications. For example, in one embodiment, an enhanced vision system comprises an image capture component having a visible light sensor to capture visible light images and an infrared sensor to capture infrared images. The system comprises a first control component adapted to provide a plurality of selectable processing modes to a user, receive a user input corresponding to a user selected processing mode, and generate a control signal indicative of the user selected processing mode, wherein the plurality of selectable processing modes includes a visible light only mode, infrared only mode, and a combined visible-infrared mode.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: June 10, 2014
    Assignee: FLIR Systems, Inc.
    Inventors: Nicholas Högasten, Jeffrey S. Scott, Patrick B. Richardson, Jeffrey D. Frank, Austin A. Richards, James T. Woolaway
  • Patent number: 8447845
    Abstract: Systems, apparatus, and methods are disclosed herein to provide default settings for a network device. For example, a network device includes a memory, and a processor that is configured to: transmit an outgoing signal through a network connector; receive the outgoing signal via the network connector; and set the network device to default settings after receiving the outgoing signal.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: May 21, 2013
    Assignee: Flir Systems, Inc.
    Inventors: Jeffrey S. Scott, Marinus C. De Jong
  • Publication number: 20120249863
    Abstract: A boresight alignment system facilitates aligning a plurality of cameras and/or images of the cameras with respect to one another. The system may have a mount configured to facilitate attachment of a bezel containing a plurality of cameras to the mount. The system may have a plurality of targets and each target may be configured to provide light of at least two different wavelengths and/or ranges of wavelengths. One or more baffles may be disposed optically between the mount and the target assembly to inhibit stray light from being incident upon the cameras.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Applicant: FLIR SYSTEMS, INC.
    Inventors: Marco A. Scussat, Richard M. Goeden, Jeffrey S. Scott, Richard G. Lane, Gary B. Hughes
  • Publication number: 20100309315
    Abstract: Systems and methods disclosed herein provide for infrared camera systems and methods for dual sensor applications. For example, in one embodiment, an enhanced vision system comprises an image capture component having a visible light sensor to capture visible light images and an infrared sensor to capture infrared images. The system comprises a first control component adapted to provide a plurality of selectable processing modes to a user, receive a user input corresponding to a user selected processing mode, and generate a control signal indicative of the user selected processing mode, wherein the plurality of selectable processing modes includes a visible light only mode, infrared only mode, and a combined visible-infrared mode.
    Type: Application
    Filed: June 3, 2009
    Publication date: December 9, 2010
    Applicant: FLIR Systems, Inc.
    Inventors: Nicholas Hogasten, Jeffrey S. Scott, Patrick B. Richardson, Jeffrey D. Frank, Austin A. Richards, James T. Woolaway
  • Patent number: 6910060
    Abstract: A system, apparatus and methods are disclosed for the spatial and temporal processing of time dependant array data using analog signal processors. In one embodiment, a programmable array of switched capacitors is used to provide tunable parameters for controlling the desired processing of input data streams. The switched capacitor implementation of a spatial filter provides a massively parallel device that can be programmed to perform isotropic and spatially-oriented anisotropic filtering with low power demands. The system further includes the ability to combine differently filtered output streams with independent multiplicative weights. In another embodiment, the nonlinear spatio-temporal motion energy of a two-dimensional image stream data is computed. The spatial-temporal filter is able to combine multiple analog filters, both spatial and temporal, to perform complex spatial-temporal filtering operations implemented by Gaussian kernel filtering chips.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: June 21, 2005
    Assignee: Computational Sensor Corp.
    Inventors: John D. Langan, Jeffrey S. Scott, Peter Stobbe
  • Publication number: 20040193670
    Abstract: A system, apparatus and methods are disclosed for the spatial and temporal processing of time dependant array data using analog signal processors. In one embodiment, a programmable array of switched capacitors is used to provide tunable parameters for controlling the desired processing of input data streams. The switched capacitor implementation of a spatial filter provides a massively parallel device that can be programmed to perform isotropic and spatially-oriented anisotropic filtering with low power demands. The system further includes the ability to combine differently filtered output streams with independent multiplicative weights. In another embodiment, the nonlinear spatio-temporal motion energy of a two-dimensional image stream data is computed. The spatial-temporal filter is able to combine multiple analog filters, both spatial and temporal, to perform complex spatial-temporal filtering operations implemented by Gaussian kernel filtering chips.
    Type: Application
    Filed: January 7, 2004
    Publication date: September 30, 2004
    Inventors: John D. Langan, Jeffrey S. Scott, Peter Stobbe
  • Publication number: 20030041084
    Abstract: A system, apparatus and methods are disclosed for the spatial and temporal processing of time dependant array data using analog signal processors. In one embodiment, a programmable array of switched capacitors is used to provide tunable parameters for controlling the desired processing of input data streams. The switched capacitor implementation of a spatial filter provides a massively parallel device that can be programmed to perform isotropic and spatially-oriented anisotropic filtering with low power demands. The system further includes the ability to combine differently filtered output streams with independent multiplicative weights. In another embodiment, the nonlinear spatio-temporal motion energy of a two-dimensional image stream data is computed. The spatial-temporal filter is able to combine multiple analog filters, both spatial and temporal, to perform complex spatial-temporal filtering operations implemented by Gaussian kernel filtering chips.
    Type: Application
    Filed: May 21, 2002
    Publication date: February 27, 2003
    Inventors: John D. Langan, Jeffrey S. Scott, Peter Stobbe