Patents by Inventor Jeffrey S. Vanderpool
Jeffrey S. Vanderpool has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7411936Abstract: A method for establishing communications between a master unit and a plurality of node units. Of the plurality of node units, K node units are assumed to have established communications with a master unit. A first (K+1) node unit of the plurality of node units, desires to establish communications with the master unit. The method includes transmitting from the master unit, a base-station spread spectrum signal having a common signaling chip code, transmitting from the first node unit a second spread spectrum signal with a first identification code using the common-signaling chip code, transmitting from the master unit a third spread spectrum signal with a master unit identification code, using the common-signaling chip code. The method further includes generating at the first node unit using the master unit identification signal, a master unit chip code for transmitting spread spectrum signals to the master unit.Type: GrantFiled: December 5, 2000Date of Patent: August 12, 2008Assignee: Intel CorporationInventors: Robert C. Dixon, Jeffrey S. Vanderpool
-
Patent number: 7120187Abstract: A system for accessing a telephone system, in which a set of user stations are matched with a set of base stations for connection to a telephone network. Each base station may be coupled directly or indirectly to the telephone network and may be capable of initiating or receiving calls on the telephone network. Each user station may comprise a spread-spectrum transmitter or receiver and may be capable of dynamic connection to selected base stations. A plurality of base stations may be coupled to a private exchange telephone system for coupling user stations in calls outside the telephone network.Type: GrantFiled: April 14, 2003Date of Patent: October 10, 2006Assignee: Intel CorporationInventor: Jeffrey S. Vanderpool
-
Publication number: 20030219063Abstract: A system for accessing a telephone system, in which a set of user stations are matched with a set of base stations for connection to a telephone network. Each base station may be coupled directly or indirectly to the telephone network and may be capable of initiating or receiving calls on the telephone network. Each user station may comprise a spread-spectrum transmitter or receiver and may be capable of dynamic connection to selected base stations. A plurality of base stations may be coupled to a private exchange telephone system for coupling user stations in calls outside the telephone network. User stations may use CDMA, FDMA, TDMA or other multiple-access techniques to obtain one or more clear communication paths to base stations. Base stations may be placed at convenient locations or may themselves be mobile. User stations may make and break connections with base stations as the user station moves between service regions, or is otherwise more advantageously serviced by, base stations.Type: ApplicationFiled: April 14, 2003Publication date: November 27, 2003Inventor: Jeffrey S. Vanderpool
-
Publication number: 20030193990Abstract: A system for accessing a telephone system, in which a set of user stations are matched with a set of base stations for connection to a telephone network. Each base station may be coupled directly or indirectly to the telephone network and may be capable of initiating or receiving calls on the telephone network. Each user station may comprise a spread-spectrum transmitter or receiver and may be capable of dynamic connection to selected base stations. A plurality of base stations may be coupled to a private exchange telephone system for coupling user stations in calls outside the telephone network. User stations may use CDMA, FDMA, TDMA or other multiple-access techniques to obtain one or more clear communication paths to base stations. Base stations may be placed at convenient locations or may themselves be mobile. User stations may make and break connections with base stations as the user station moves between service regions, or is otherwise more advantageously serviced by, base stations.Type: ApplicationFiled: April 14, 2003Publication date: October 16, 2003Inventor: Jeffrey S. Vanderpool
-
Patent number: 6621852Abstract: A wireless communication system employing spread-spectrum communication techniques includes a plurality of base stations that may be coupled directly or indirectly to a telephone network, and may initiate or receive calls on the telephone network. A plurality of user stations may include a spread-spectrum transmitter and receiver and may provide for dynamic connection to selected base stations. In one embodiment, one or more of the base stations may include an augmented base station and include means for communicating with the user stations over an alternative communication path distinct from a spread-spectrum path, such as over a cellular communication path.Type: GrantFiled: December 14, 2001Date of Patent: September 16, 2003Assignee: Intel CorporationInventor: Jeffrey S. Vanderpool
-
Patent number: 6421368Abstract: A system for accessing a telephone system, in which a set of user stations are matched with a set of base stations for connection to a telephone network. Each base station may be coupled directly or indirectly to the telephone network and may be capable of initiating or receiving calls on the telephone network. Each user station may comprise a spread-spectrum transmitter or receiver and may be capable of dynamic connection to selected base stations. A plurality of base stations may be coupled to a private exchange telephone system for coupling user stations in calls outside the telephone network. User stations may use CDMA, FDMA, TDMA or other multiple-access techniques to obtain one or more clear communication paths to base stations. User stations may make and break connections with base stations as the user station moves between service regions, or is otherwise more advantageously serviced by, base stations.Type: GrantFiled: February 23, 1999Date of Patent: July 16, 2002Assignee: Xircom Wireless, Inc.Inventor: Jeffrey S. Vanderpool
-
Publication number: 20020085618Abstract: A system for accessing a telephone system, in which a set of user stations are matched with a set of base stations for connection to a telephone network. Each base station may be coupled directly or indirectly to the telephone network and may be capable of initiating or receiving calls on the telephone network. Each user station may comprise a spread-spectrum transmitter or receiver and may be capable of dynamic connection to selected base stations. A plurality of base stations may be coupled to a private exchange telephone system for coupling user stations in calls outside the telephone network. User stations may use CDMA, FDMA, TDMA or other multiple-access techniques to obtain one or more clear communication paths to base stations. Base stations may be placed at convenient locations or may themselves be mobile. User stations may make and break connections with base stations as the user station moves between service regions, or is otherwise more advantageously serviced by, base stations.Type: ApplicationFiled: December 14, 2001Publication date: July 4, 2002Applicant: Xircom Wireless, Inc.Inventor: Jeffrey S. Vanderpool
-
Patent number: 6389059Abstract: A technique for spread-spectrum communication which uses more than one mode and more than one frequency band. Selectable modes include narrowband mode and spread-spectrum mode, or cellular mode and microcellular mode. Selectable frequency bands include both licensed and unlicensed frequency bands, particularly frequency bands including the 902-928 MHz, 1850-1990 MHz, and 2.4-2.4835 GHz frequency bands. Spread-spectrum communication channels are 10 MHz or less in width. The frequency band onto which spread-spectrum signals are encoded may be changed upon a change in environment or other control trigger, such as establishment or de-establishment of communication with a private access network.Type: GrantFiled: March 23, 1999Date of Patent: May 14, 2002Assignee: Xircom Wireless, Inc.Inventors: Douglas G. Smith, Robert C. Dixon, Jeffrey S. Vanderpool
-
Publication number: 20010000136Abstract: A method for establishing communications between a master unit and a plurality of node units. Of the plurality of node units, K node units are assumed to have established communications with a master unit. A first (K+1) node unit of the plurality of node units, desires to establish communications with the master unit. The method includes transmitting from the master unit, a base-station spread spectrum signal having a common signalling chip code, transmitting from the first node unit a second spread spectrum signal with a first identification code using the common-signalling chip code, transmitting from the master unit a third spread spectrum signal with a master unit identification code, using the common-signalling chip code. The method further includes generating at the first node unit using the master unit identification signal, a master unit chip code for transmitting spread spectrum signals to the master unit.Type: ApplicationFiled: December 5, 2000Publication date: April 5, 2001Inventors: Robert C. Dixon, Jeffrey S. Vanderpool
-
Patent number: 6118824Abstract: A system for publishing data on shared broadcast channels using spread-spectrum techniques, which may comprise a spread-spectrum encoder capable of receiving data and placing it in a spread-spectrum signal format and a transmitter operating on a shared communication channel or frequency band, such as might be allocated to terrestrial point-to-point or broadcast communications. The shared communication channel may comprise a cellular system, in which data may be transmitted using spread-spectrum techniques using the transmitters and repeaters of the cellular system simultaneously with voice and other transmissions associated with the cellular system. A subscriber station may be capable of receiving using a plurality of different communication channels or frequency bands, such as a first receiver capable of cellular reception and a second receiver capable of satellite reception, at least one of which uses spread-spectrum techniques.Type: GrantFiled: April 20, 1998Date of Patent: September 12, 2000Assignee: Omnipoint CorporationInventors: Douglas G. Smith, Robert C. Dixon, Jeffrey S. Vanderpool
-
Patent number: 6115412Abstract: A system for accessing a telephone system, in which a set of user stations are matched with a set of base stations for connection to a telephone network. Each base station may be coupled directly or indirectly to the telephone network and may be capable of initiating or receiving calls on the telephone network. Each user station may comprise a spread-spectrum transmitter or receiver and may be capable of dynamic connection to selected base stations. A plurality of base stations may be coupled to a private exchange telephone system for coupling user stations in calls outside the telephone network. User stations may use CDMA, FDMA, TDMA or other multiple-access techniques to obtain one or more clear communication paths to base stations. Base stations may be placed at convenient locations or may themselves be mobile. User stations may make and break connections with base stations as the user station moves between service regions, or is otherwise more advantageously serviced by, base stations.Type: GrantFiled: September 15, 1997Date of Patent: September 5, 2000Assignee: Omnipoint CorporationInventor: Jeffrey S. Vanderpool
-
Patent number: 5991625Abstract: A wireless communication system employing spread-spectrum communication techniques. A plurality of base stations may be coupled directly or indirectly to a telephone network and may initiate or receive calls on the telephone network. A plurality of user stations may comprise a spread-spectrum transmitter and receiver and may provide for dynamic connection to selected base stations. In one preferred form, one or more of the base stations may comprise an augmented base station and include means for communication with the user stations over an alternative communication path distinct from a spread-spectrum path, for example, over a cellular communication path. The augmented base stations may also communication with one or more cluster controllers, enhances service processors, or control stations coupled to the telephone network.Type: GrantFiled: August 7, 1996Date of Patent: November 23, 1999Assignee: Omnipoint CorporationInventor: Jeffrey S. Vanderpool
-
Patent number: 5887020Abstract: A technique for spread-spectrum communication which uses more than one mode and more than one frequency band. Selectable modes include narrowband mode and spread-spectrum mode, or cellular mode and microcellular mode. Selectable frequency bands include both licensed and unlicensed frequency bands, particularly frequency bands including the 902-928 MHz, 1850-1990 MHz, and 2.4-2.4835 GHz frequency bands. Spread-spectrum communication channels are 10 MHz or less in width. The frequency band onto which spread-spectrum signals are encoded may be changed upon a change in environment or other control trigger, such as establishment or de-establishment of communication with a private access network.Type: GrantFiled: August 18, 1994Date of Patent: March 23, 1999Assignee: Omnipoint CorporationInventors: Douglas G. Smith, Robert C. Dixon, Jeffrey S. Vanderpool
-
Patent number: 5815525Abstract: A technique for spread-spectrum communication which uses more than one mode and more than one frequency band. Selectable modes include narrowband mode and spread-spectrum mode, or cellular mode and microcellular mode. Selectable frequency bands include both licensed and unlicensed frequency bands, particularly frequency bands including the 902-928 MHz, 1850-1990 MHz, and 2.4-2.4835 GHz frequency bands. Spread-spectrum communication channels are 10 MHz or less in width. The frequency band onto which spread-spectrum signals are encoded may be changed upon a change in environment or other control trigger, such as establishment or de-establishment of communication with a private access network.Type: GrantFiled: March 27, 1996Date of Patent: September 29, 1998Assignee: Omnipoint CorporationInventors: Douglas G. Smith, Robert C. Dixon, Jeffrey S. Vanderpool
-
Patent number: 5796772Abstract: A technique for spread-spectrum communication which uses more than one mode and more than one frequency band. Selectable modes include narrowband mode and spread-spectrum mode, or cellular mode and microcellular mode. Selectable frequency bands include both licensed and unlicensed frequency bands, particularly frequency bands including the 902-928 MHz, 1850-1990 MHz, and 2.4-2.4835 GHz frequency bands. Spread-spectrum communication channels are 10 MHz or less in width. The frequency band onto which spread-spectrum signals are encoded may be changed upon a change in environment or other control trigger, such as establishment or de-establishment of communication with a private access network. A multi-band transmitter comprises a single frequency synthesizer and a frequency source (e.g., a local oscillator), coupled to a selectable band pass filter.Type: GrantFiled: June 7, 1995Date of Patent: August 18, 1998Assignee: Omnipoint CorporationInventors: Douglas G. Smith, Robert C. Dixon, Jeffrey S. Vanderpool
-
Patent number: 5790587Abstract: A technique for spread-spectrum communication which uses more than one mode and more than one frequency band. Selectable modes include narrowband mode and spread-spectrum mode, or cellular mode and microcellular mode. Selectable frequency bands include both licensed and unlicensed frequency bands, particularly frequency bands including the 902-928 MHz, 1850-1990 MHz, and 2.4-2.4835 GHz frequency bands. Spread-spectrum communication channels are 10 MHz or less in width. The frequency band onto which spread-spectrum signals are encoded may be changed upon a change in environment or other control trigger, such as establishment or de-establishment of communication with a private access network. A multi-band transmitter comprises a single frequency synthesizer and a frequency source (e.g., a local oscillator), coupled to a selectable band pass filter.Type: GrantFiled: June 7, 1995Date of Patent: August 4, 1998Assignee: Omnipoint CorporationInventors: Douglas G. Smith, Robert C. Dixon, Jeffrey S. Vanderpool
-
Patent number: 5737324Abstract: A method for establishing communications between a master unit and a plurality of node units. Of the plurality of node units, K node units are assumed to have established communications with a master unit. A first (K+1) node unit of the plurality of node units, desires to establish communications with the master unit. The method includes transmitting from the master unit, a base-station spread spectrum signal having a common signalling chip code, transmitting from the first node unit a second spread spectrum signal with a first identification code using the common-signalling chip code, transmitting from the master unit a third spread spectrum signal with a master unit identification code, using the common-signalling chip code. The method further includes generating at the first node unit using the master unit identification signal, a master unit chip code for transmitting spread spectrum signals to the master unit.Type: GrantFiled: December 16, 1996Date of Patent: April 7, 1998Assignee: Omnipoint CorporationInventors: Robert C. Dixon, Jeffrey S. Vanderpool
-
Patent number: 5719900Abstract: An apparatus for decoding a received spread spectrum signal having a data signal modulated with a pseudo-noise code and transmitted as an RF spread spectrum signal. A first reference register holds a first pseudo-noise signal, a second reference register holds a second pseudo-noise signal, and a receive-register holds a received spread spectrum signal. A first modulo adder adds each chip of the received spread spectrum signal with each respective chip of the first pseudo-noise signal, thereby generating a first plurality of chip-comparison signals. A first summer adds the first plurality of chip-comparison signals, generating a first correlation signal. The comparator compares the correlation signal to an upper threshold level and a lower-threshold level, and respectively generates a first data-symbol signal or a second data-symbol signal.Type: GrantFiled: March 11, 1996Date of Patent: February 17, 1998Assignee: Omnipoint CorporationInventors: Robert C. Dixon, Jeffrey S. Vanderpool
-
Patent number: 5694414Abstract: A technique for spread-spectrum communication which uses more than one mode and more than one frequency band. Selectable modes include narrowband mode and spread-spectrum mode, or cellular mode and microcellular mode. Selectable frequency bands include both licensed and unlicensed frequency bands, particularly frequency bands including the 902-928 MHz, 1850-1990 MHz, and 2.4-2.4835 GHz frequency bands. Spread-spectrum communication channels are 10 MHz or less in width. The frequency band onto which spread-spectrum signals are encoded may be changed upon a change in environment or other control trigger, such as establishment or de-establishment of communication with a private access network. A multi-band transmitter comprises a single frequency synthesizer and a frequency source (e.g., a local oscillator), coupled to a selectable band pass filter.Type: GrantFiled: June 7, 1995Date of Patent: December 2, 1997Assignee: Omnipoint CorporationInventors: Douglas G. Smith, Robert C. Dixon, Jeffrey S. Vanderpool
-
Patent number: 5654978Abstract: A method of pulse-position modulation in a spread-spectrum communication system, which is capable of transmitting more than one bit per received and recognized chip sequence in a system in which an entire chip sequence is required to produce a correlation pulse. A framing pulse window in which a framing pulse may be received, and a plurality of data pulse windows in which a data pulse may (or may not) be received. The delay between the framing pulse window and the first data pulse window may comprise an entire chip-sequence duration, while the delay from one data pulse window to the next may be less. A method of pulse-position modulation with more than one spread-spectrum code. A second transmission medium (such as a second spread-spectrum code) on which a data pulse may (or may not) be received. Each possible choice, for the data pulse, of delay time and transmission code may represent a separate set of multiple data bits.Type: GrantFiled: November 1, 1993Date of Patent: August 5, 1997Assignee: Omnipoint CorporationInventors: Jeffrey S. Vanderpool, Ryan N. Jensen, Pete O. Peterson, Michael Williams