Patents by Inventor Jeffrey Scott Cites

Jeffrey Scott Cites has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10864707
    Abstract: Laminated structures comprise a metal sheet including a first face and a second face with a thickness of from about 0.5 mm to about 2 mm extending between the first face and the second face. The laminated structure further includes a first chemically strengthened glass sheet including a thickness of less than or equal to about 1.1 mm and a first interlayer attaching the first chemically strengthened glass sheet to the first face of the metal sheet. In further examples, methods of manufacturing a laminated structure comprise the steps of laminating with a metal sheet and a first chemically strengthened glass sheet together with an interlayer.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: December 15, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Gordon Charles Brown, Jeffrey Scott Cites, William Keith Fisher, Mark Stephen Friske, Chunhe Zhang
  • Patent number: 10166744
    Abstract: Laminated structures comprise a metal sheet including a first face and a second face with a thickness of from about 0.5 mm to about 2 mm extending between the first face and the second face. The laminated structure further includes a first chemically strengthened glass sheet including a thickness of less than or equal to about 1.1 mm and a first interlayer attaching the first chemically strengthened glass sheet to the first face of the metal sheet. In further examples, methods of manufacturing a laminated structure comprise the steps of laminating with a metal sheet and a first chemically strengthened glass sheet together with an interlayer.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: January 1, 2019
    Assignee: Corning Incorporated
    Inventors: Gordon Charles Brown, Jeffrey Scott Cites, William Keith Fisher, Mark Stephen Friske, Chunhe Zhang
  • Patent number: 10144198
    Abstract: A glass laminate structure comprising an external glass sheet and an internal glass sheet wherein one or both of the glass sheets comprises SiO2+B2O3+Al2O3?86.5 mol. %. and R2O—RO—Al2O3<about 5 mol. %. Exemplary glass sheet can comprise between about 69-80 mol. % SiO2, between about 6-12 mol. % Al2O3, between about 2-10 mol. % B2O3, between about 0-5 mol. % ZrO2, Li2O, MgO, ZnO and P2O5, between about 6-15 mol. % Na2O, between about 0-3 mol. % K2O and CaO, and between about 0-2 mol. % SnO2 to provide a mechanically robust and environmentally durable structure.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: December 4, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Jeffrey Scott Cites, Thomas Michael Cleary, James Gregory Couillard, Sinue Gomez, Michael John Moore, Robert Michael Morena, James Joseph Price, Charles Mitchel Sorensen, Jr., Jonathan Earl Walter
  • Patent number: 9339993
    Abstract: A thin lightweight glass fascia for appliances. The fascia may be a seamless shaped glass fascia for an appliance, such as a glass fascia that wraps around at least two opposing edges of an appliance. The glass fascia may seamlessly incorporate a display or control panel under the fascia. A mounting arrangement that facilitates quick fascia removal and replacement may be provided. The fascia may be a chemically-strengthened glass sheet having a thickness of less than 2.0 mm, and a near-surface region under a compressive stress, wherein the compressive stress (CS) at a surface of the first glass sheet is greater than 300 MPa and extends to a depth of layer of at least 20 micrometers.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: May 17, 2016
    Assignee: Corning Incorporated
    Inventors: Jeffrey Scott Cites, Steven S. Rosenblum, George Francis Wildeman
  • Publication number: 20150314571
    Abstract: A glass laminate structure comprising an external glass sheet and an internal glass sheet wherein one or both of the glass sheets comprises SiO2+B2O3+Al2O3?86.5 mol. %. and R2O—RO—Al2O3< about 5 mol. %. Exemplary glass sheet can comprise between about 69-80 mol. % SiO2, between about 6-12 mol. % Al2O3, between about 2-10 mol. % B2O3, between about 0-5 mol. % ZrO2, Li2O, MgO, ZnO and P2O5, between about 6-15 mol. % Na2O, between about 0-3 mol. % K2O and CaO, and between about 0-2 mol. % SnO2 to provide a mechanically robust and environmentally durable structure.
    Type: Application
    Filed: April 29, 2015
    Publication date: November 5, 2015
    Inventors: Jeffrey Scott Cites, Thomas Michael Cleary, James Gregory Couillard, Sinue Gomez, Michael John Moore, Robert Michael Morena, James Joseph Price, Charles Mitchel Sorensen, JR., Jonathan Earl Walter
  • Publication number: 20150246507
    Abstract: Laminated structures comprise a metal sheet including a first face and a second face with a thickness of from about 0.5 mm to about 2 mm extending between the first face and the second face. The laminated structure further includes a first chemically strengthened glass sheet including a thickness of less than or equal to about 1.1 mm and a first interlayer attaching the first chemically strengthened glass sheet to the first face of the metal sheet. In further examples, methods of manufacturing a laminated structure comprise the steps of laminating with a metal sheet and a first chemically strengthened glass sheet together with an interlayer.
    Type: Application
    Filed: October 2, 2013
    Publication date: September 3, 2015
    Inventors: Gordon Charles Brown, Jeffrey Scott Cites, William Keith Fisher, Mark Stephen Friske, Chunhe Zhang
  • Patent number: 8772875
    Abstract: A semiconductor-on-glass substrate having a relatively stiff (e.g. relatively high Young's modulus of 125 or higher) stiffening layer or layers placed between the silicon film and the glass in order to eliminate the canyons and pin holes that otherwise form in the surface of the transferred silicon film during the ion implantation thin film transfer process. The new stiffening layer may be formed of a material, such as silicon nitride, that also serves as an efficient barrier against penetration of sodium and other harmful impurities from the glass substrate into the silicon film.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: July 8, 2014
    Assignees: Corning Incorporated, SOITEC
    Inventors: Nadia Ben Mohamed, Ta-ko Chuang, Jeffrey Scott Cites, Daniel Delprat, Alexander Usenko
  • Publication number: 20140087193
    Abstract: Methods and apparatus provide for performing an ion exchange process by immersing a glass sheet into a molten salt bath at one or more first temperatures for a first period of time such that ions within the glass sheet proximate to a surface thereof are exchanged for larger ions from the molten salt bath, thereby producing: (i) an initial compressive stress (iCS) at the surface of the glass sheet, (ii) an initial depth of compressive layer (iDOL) into the glass sheet, and (iii) an initial central tension (iCT) within the glass sheet; and annealing the glass sheet, after the ion exchange process has been completed, by elevating the glass sheet to one or more second temperatures for a second period of time such that at least one of the initial compressive stress (iCS), the initial depth of compressive layer (iDOL), and the initial central tension (iCT) are modified.
    Type: Application
    Filed: September 26, 2012
    Publication date: March 27, 2014
    Inventors: Jeffrey Scott Cites, Thomas Michael Cleary, James Gregory Couillard, Michael John Moore
  • Publication number: 20130341756
    Abstract: A semiconductor-on-glass substrate having a relatively stiff (e.g. relatively high Young's modulus of 125 or higher) stiffening layer or layers placed between the silicon film and the glass in order to eliminate the canyons and pin holes that otherwise form in the surface of the transferred silicon film during the ion implantation thin film transfer process. The new stiffening layer may be formed of a material, such as silicon nitride, that also serves as an efficient barrier against penetration of sodium and other harmful impurities from the glass substrate into the silicon film.
    Type: Application
    Filed: August 22, 2013
    Publication date: December 26, 2013
    Applicants: SOITEC, CORNING INCORPORATED
    Inventors: Nadia Ben Mohamed, Ta-Ko Chuang, Jeffrey Scott Cites, Daniel Delprat, Alexander Usenko
  • Patent number: 8518799
    Abstract: A process of making semiconductor-on-glass substrates having a relatively stiff (e.g. relatively high Young's modulus of 125 or higher) stiffening layer between the silicon film and the glass in an ion implantation thin film transfer process by depositing a stiffening layer or layers on one of the donor wafer or the glass substrate in order to eliminate the canyons and pin holes that otherwise form in the surface of the transferred silicon film during the thin film transfer process. The new stiffening layer may be formed of a material, such as silicon nitride, that also serves as an efficient barrier against penetration of sodium and other harmful impurities from the glass substrate into the silicon film.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: August 27, 2013
    Assignees: Corning Incorporated, S.O.I TEC Silicon on Insulator Technologies
    Inventors: Nadia Ben Mohamed, Ta-Ko Chuang, Jeffrey Scott Cites, Daniel Delprat, Alex Usenko
  • Publication number: 20130164483
    Abstract: A thin lightweight glass fascia for appliances. The fascia may be a seamless shaped glass fascia for an appliance, such as a glass fascia that wraps around at least two opposing edges of an appliance. The glass fascia may seamlessly incorporate a display or control panel under the fascia. A mounting arrangement that facilitates quick fascia removal and replacement may be provided. The fascia may be a chemically-strengthened glass sheet having a thickness of less than 2.0 mm, and a near-surface region under a compressive stress, wherein the compressive stress (CS) at a surface of the first glass sheet is greater than 300 MPa and extends to a depth of layer of at least 20 micrometers.
    Type: Application
    Filed: September 13, 2011
    Publication date: June 27, 2013
    Inventors: Jeffrey Scott Cites, Steven S. Rosenblum, George Francis Wildeman
  • Publication number: 20130130473
    Abstract: A semiconductor-on-glass substrate having a relatively stiff (e.g. relatively high Young's modulus of 125 or higher) stiffening layer or layers placed between the silicon film and the glass in order to eliminate the canyons and pin holes that otherwise form in the surface of the transferred silicon film during the ion implantation thin film transfer process. The new stiffening layer may be formed of a material, such as silicon nitride, that also serves as an efficient barrier against penetration of sodium and other harmful impurities from the glass substrate into the silicon film.
    Type: Application
    Filed: December 14, 2012
    Publication date: May 23, 2013
    Inventors: Nadia Ben Mohamed, Ta-Ko Chuang, Jeffrey Scott Cites, Daniel Delprat, Alex Usenko
  • Patent number: 8357974
    Abstract: A semiconductor-on-glass substrate having a relatively stiff (e.g. relatively high Young's modulus of 125 or higher) stiffening layer or layers placed between the silicon film and the glass in order to eliminate the canyons and pin holes that otherwise form in the surface of the transferred silicon film during the ion implantation thin film transfer process. The new stiffening layer may be formed of a material, such as silicon nitride, that also serves as an efficient barrier against penetration of sodium and other harmful impurities from the glass substrate into the silicon film.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: January 22, 2013
    Assignees: Corning Incorporated, SOITEC
    Inventors: Nadia Ben Mohamed, Ta Ko Chuang, Jeffrey Scott Cites, Daniel Delprat, Alex Usenko
  • Patent number: 8338269
    Abstract: Methods and apparatus provide for forming a semiconductor-on-insulator (SOI) structure, including subjecting a implantation surface of a donor semiconductor wafer to an ion implantation step to create a weakened slice in cross-section defining an exfoliation layer of the donor semiconductor wafer; and subjecting the donor semiconductor wafer to a spatial variation step, either before, during or after the ion implantation step, such that at least one parameter of the weakened slice varies spatially across the weakened slice in at least one of X- and Y- axial directions.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: December 25, 2012
    Assignee: Corning Incorporated
    Inventors: Sarko Cherekdjian, Jeffrey Scott Cites, James Gregory Couillard, Richard Orr Maschmeyer, Michael John Moore, Alex Usenko
  • Publication number: 20120028443
    Abstract: Methods and apparatus provide for forming a semiconductor-on-insulator (SOI) structure, including subjecting a implantation surface of a donor semiconductor wafer to an ion implantation step to create a weakened slice in cross-section defining an exfoliation layer of the donor semiconductor wafer; and subjecting the donor semiconductor wafer to a spatial variation step, either before, during or after the ion implantation step, such that at least one parameter of the weakened slice varies spatially across the weakened slice in at least one of X- and Y- axial directions.
    Type: Application
    Filed: October 5, 2011
    Publication date: February 2, 2012
    Inventors: Sarko Cherekdjian, Jeffrey Scott Cites, James Gregory Couillard, Richard Orr Maschmeyer, Michael John Moore, Alex Usenko
  • Publication number: 20120001293
    Abstract: A semiconductor-on-glass substrate having a relatively stiff (e.g. relatively high Young's modulus of 125 or higher) stiffening layer or layers placed between the silicon film and the glass in order to eliminate the canyons and pin holes that otherwise form in the surface of the transferred silicon film during the ion implantation thin film transfer process. The new stiffening layer may be formed of a material, such as silicon nitride, that also serves as an efficient barrier against penetration of sodium and other harmful impurities from the glass substrate into the silicon film.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Inventors: Nadia Ben Mohamed, Ta Ko Chuang, Jeffrey Scott Cites, Daniel Delprat, Alex Usenko
  • Patent number: 8058148
    Abstract: Methods and apparatus provide for forming a semiconductor-on-insulator (SOI) structure, including subjecting a implantation surface of a donor semiconductor wafer to an ion implantation step to create a weakened slice in cross-section defining an exfoliation layer of the donor semiconductor wafer; and subjecting the donor semiconductor wafer to a spatial variation step, either before, during or after the ion implantation step, such that at least one parameter of the weakened slice varies spatially across the weakened slice in at least one of X- and Y-axial directions.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: November 15, 2011
    Assignee: Corning Incorporated
    Inventors: Sarko Cherekdjian, Jeffrey Scott Cites, James Gregory Couillard, Richard Orr Maschmeyer, Michael John Moore, Alex Usenko
  • Patent number: 8003491
    Abstract: Methods and apparatus provide for forming a semiconductor-on-insulator (SOI) structure, including subjecting a implantation surface of a donor semiconductor wafer to an ion implantation step to create a weakened slice in cross-section defining an exfoliation layer of the donor semiconductor wafer; and subjecting the donor semiconductor wafer to a spatial variation step, either before, during or after the ion implantation step, such that at least one parameter of the weakened slice varies spatially across the weakened slice in at least one of X- and Y-axial directions.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: August 23, 2011
    Assignee: Corning Incorporated
    Inventors: Sarko Cherekdjian, Jeffrey Scott Cites, James Gregory Couillard, Richard Orr Maschmeyer, Michael John Moore, Alex Usenko
  • Patent number: 7927970
    Abstract: Disclosed are methods for making SOI and SOG structures using purified ion shower for implanting ions to the donor substrate. The purified ion shower provides expedient, efficient, low-cost and effective ion implantation while minimizing damage to the exfoliation film.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: April 19, 2011
    Assignee: Corning Incorporated
    Inventors: Jeffrey Scott Cites, Kishor Purushottam Gadkaree, Richard Orr Maschmeyer
  • Patent number: 7816225
    Abstract: Methods and apparatus provide for forming a semiconductor-on-insulator (SOI) structure, including subjecting a implantation surface of a donor semiconductor wafer to an ion implantation step to create a weakened slice in cross-section defining an exfoliation layer of the donor semiconductor wafer; and subjecting the donor semiconductor wafer to a spatial variation step, either before, during or after the ion implantation step, such that at least one parameter of the weakened slice varies spatially across the weakened slice in at least one of X-and Y-axial directions.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: October 19, 2010
    Assignee: Corning Incorporated
    Inventors: Sarko Cherekdjian, Jeffrey Scott Cites, James Gregory Couillard, Richard Orr Maschmeyer, Michael John Moore, Alex Usenko