Patents by Inventor Jeffrey Scott HERD

Jeffrey Scott HERD has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11579363
    Abstract: An integrated optical beam steering device includes a planar Luneburg lens that collimates beams from different inputs in different directions within the lens plane. It also includes a curved (e.g., semi-circular or arced) grating coupler that diffracts the collimated beams out of the lens plane. The beams can be steered in the plane by controlling the direction along which the lens is illuminated and out of the plane by varying the beam wavelength. Unlike other beam steering devices, this device can operate over an extremely wide field of view—up to 180°—without any aberrations off boresight. In other words, the beam quality is uniform in all directions, unlike with aplanatic lenses, thanks to the circular symmetry of the planar Luneburg lens, which may be composed of subwavelength features. The lens is also robust to misalignment and fabrication imperfections and can be made using standard CMOS processes.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: February 14, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Josue Lopez, Samuel Kim, Jamison Sloan, Boris Kharas, Jeffrey Scott Herd, Marin Soljacic, Cheryl Marie Sorace-Agaskar, Suraj Deepak Bramhavar, Steven Glenn Johnson, George Barbastathis
  • Publication number: 20220057573
    Abstract: An integrated optical beam steering device includes a planar Luneburg lens that collimates beams from different inputs in different directions within the lens plane. It also includes a curved (e.g., semi-circular or arced) grating coupler that diffracts the collimated beams out of the lens plane. The beams can be steered in the plane by controlling the direction along which the lens is illuminated and out of the plane by varying the beam wavelength. Unlike other beam steering devices, this device can operate over an extremely wide field of view—up to 180°—without any aberrations off boresight. In other words, the beam quality is uniform in all directions, unlike with aplanatic lenses, thanks to the circular symmetry of the planar Luneburg lens, which may be composed of subwavelength features. The lens is also robust to misalignment and fabrication imperfections and can be made using standard CMOS processes.
    Type: Application
    Filed: October 8, 2021
    Publication date: February 24, 2022
    Applicant: Massachusetts Institute of Technology
    Inventors: Josue Lopez, Samuel Kim, Jamison Sloan, Boris KHARAS, Jeffrey Scott HERD, Marin SOLJACIC, Cheryl Marie SORACE-AGASKAR, Suraj Deepak BRAMHAVAR, Steven Glenn JOHNSON, George BARBASTATHIS
  • Patent number: 11163116
    Abstract: An integrated optical beam steering device includes a planar Luneburg lens that collimates beams from different inputs in different directions within the lens plane. It also includes a curved (e.g., semi-circular or arced) grating coupler that diffracts the collimated beams out of the lens plane. The beams can be steered in the plane by controlling the direction along which the lens is illuminated and out of the plane by varying the beam wavelength. Unlike other beam steering devices, this device can operate over an extremely wide field of view—up to 180°—without any aberrations off boresight. In other words, the beam quality is uniform in all directions, unlike with aplanatic lenses, thanks to the circular symmetry of the planar Luneburg lens, which may be composed of subwavelength features. The lens is also robust to misalignment and fabrication imperfections and can be made using standard CMOS processes.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: November 2, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Josue Lopez, Samuel Kim, Jamison Sloan, Boris Kharas, Jeffrey Scott Herd, Marin Soljacic, Cheryl Marie Sorace-Agaskar, Suraj Deepak Bramhavar, Steven Glenn Johnson, George Barbastathis
  • Publication number: 20200348466
    Abstract: An integrated optical beam steering device includes a planar Luneburg lens that collimates beams from different inputs in different directions within the lens plane. It also includes a curved (e.g., semi-circular or arced) grating coupler that diffracts the collimated beams out of the lens plane. The beams can be steered in the plane by controlling the direction along which the lens is illuminated and out of the plane by varying the beam wavelength. Unlike other beam steering devices, this device can operate over an extremely wide field of view—up to 180°—without any aberrations off boresight. In other words, the beam quality is uniform in all directions, unlike with aplanatic lenses, thanks to the circular symmetry of the planar Luneburg lens, which may be composed of subwavelength features. The lens is also robust to misalignment and fabrication imperfections and can be made using standard CMOS processes.
    Type: Application
    Filed: February 28, 2020
    Publication date: November 5, 2020
    Inventors: Josue Lopez, Samuel Kim, Jamison Sloan, Boris KHARAS, Jeffrey Scott HERD, Paul William JUODAWLKIS, Marin SOLJACIC, Cheryl Marie SORACE-AGASKAR, Suraj Deepak BRAMHAVAR, Steven Glenn JOHNSON, George BARBASTATHIS