Patents by Inventor Jeffrey Stapleton

Jeffrey Stapleton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953462
    Abstract: A method of forming a glass electrochemical sensor is described. In some embodiments, the method may include forming a plurality of electrical through glass vias (TGVs) in an electrode substrate; filling each of the plurality of electrical TGVs with an electrode material; forming a plurality of contact TGVs in the electrode substrate; filling each of the plurality of contact TGVs with a conductive material; patterning the conductive material to connect the electrical TGVs with the contact TGVs; forming a cavity in a first glass layer; and bonding a first side of the first glass layer to the electrode substrate.
    Type: Grant
    Filed: March 16, 2023
    Date of Patent: April 9, 2024
    Assignee: Corning Incorporated
    Inventors: Robert Alan Bellman, Jeffrey Stapleton King, Scott Christopher Pollard
  • Publication number: 20230221278
    Abstract: A method of forming a glass electrochemical sensor is described. In some embodiments, the method may include forming a plurality of electrical through glass vias (TGVs) in an electrode substrate; filling each of the plurality of electrical TGVs with an electrode material; forming a plurality of contact TGVs in the electrode substrate; filling each of the plurality of contact TGVs with a conductive material; patterning the conductive material to connect the electrical TGVs with the contact TGVs; forming a cavity in a first glass layer; and bonding a first side of the first glass layer to the electrode substrate.
    Type: Application
    Filed: March 16, 2023
    Publication date: July 13, 2023
    Inventors: Robert Alan Bellman, Jeffrey Stapleton King, Scott Christopher Pollard
  • Patent number: 11680908
    Abstract: A waveguide sensor system is provided. The system includes a light source and a waveguide formed from a light transmitting material. Light from the light source enters the waveguide at an input area and travels within the waveguide by total internal reflection to an analyte area and light to be analyzed travels within the waveguide from the analyte area by total internal reflection to an output area. An optical sensor is coupled to the output area and is configured to interact with the light to be analyzed. The system includes a plurality of pores located along the outer surface within the analyte area and formed in the light transmitting material of the waveguide, and the pores are configured to enhance light interaction with the analyte within the analyte area. The pores and analyte area may be protected and/or enhanced with a hydrophobic layer overlaying the pores.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: June 20, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Jeffrey Stapleton King, Navaneetha Krishnan Subbaiyan
  • Patent number: 11630076
    Abstract: A method of forming a glass electrochemical sensor is described. In some embodiments, the method may include forming a plurality of electrical through glass vias (TGVs) in an electrode substrate; filling each of the plurality of electrical TGVs with an electrode material; forming a plurality of contact TGVs in the electrode substrate; filling each of the plurality of contact TGVs with a conductive material; patterning the conductive material to connect the electrical TGVs with the contact TGVs; forming a cavity in a first glass layer; and bonding a first side of the first glass layer to the electrode substrate.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: April 18, 2023
    Assignee: Corning Incorporated
    Inventors: Robert Alan Bellman, Jeffrey Stapleton King, Scott Christopher Pollard
  • Publication number: 20200240922
    Abstract: A waveguide sensor system is provided. The system includes a light source and a waveguide formed from a light transmitting material. Light from the light source enters the waveguide at an input area and travels within the waveguide by total internal reflection to an analyte area and light to be analyzed travels within the waveguide from the analyte area by total internal reflection to an output area. An optical sensor is coupled to the output area and is configured to interact with the light to be analyzed. The system includes a plurality of pores located along the outer surface within the analyte area and formed in the light transmitting material of the waveguide, and the pores are configured to enhance light interaction with the analyte within the analyte area. The pores and analyte area may be protected and/or enhanced with a hydrophobic layer overlaying the pores.
    Type: Application
    Filed: April 3, 2020
    Publication date: July 30, 2020
    Inventors: Jeffrey Stapleton King, Navaneetha Krishnan Subbaiyan
  • Publication number: 20200173956
    Abstract: A method of forming a glass electrochemical sensor is described. In some embodiments, the method may include forming a plurality of electrical through glass vias (TGVs) in an electrode substrate; filling each of the plurality of electrical TGVs with an electrode material; forming a plurality of contact TGVs in the electrode substrate; filling each of the plurality of contact TGVs with a conductive material; patterning the conductive material to connect the electrical TGVs with the contact TGVs; forming a cavity in a first glass layer; and bonding a first side of the first glass layer to the electrode substrate.
    Type: Application
    Filed: April 27, 2018
    Publication date: June 4, 2020
    Inventors: Robert Alan Bellman, Jeffrey Stapleton King, Scott Christopher Pollard
  • Patent number: 10562503
    Abstract: A waveguide sensor system is provided. The system includes a light source and a waveguide formed from a light transmitting material. Light from the light source enters the waveguide at an input area and travels within the waveguide by total internal reflection to an analyte area and light to be analyzed travels within the waveguide from the analyte area by total internal reflection to an output area. An optical sensor is coupled to the output area and is configured to interact with the light to be analyzed. The system includes a plurality of pores located along the outer surface within the analyte area and formed in the light transmitting material of the waveguide, and the pores are configured to enhance light interaction with the analyte within the analyte area.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: February 18, 2020
    Assignee: Corning Incorporated
    Inventor: Jeffrey Stapleton King
  • Patent number: 10564157
    Abstract: An analyte capture device and related systems and methods are provided. The analyte capture device includes a glass material, an outer surface defined by the glass material, and a plurality of pores formed in the glass material along at least a portion of the outer surface. The analyte capture device is exposed to an environment containing an analyte for a period of time such that the analyte is captured within the plurality of pores of the glass material. The concentration of the analyte within the glass material is greater than a concentration of the analyte within the environment. The analyte capture device is then removed from the environment, and a property of the analyte within the analyte capture device is detected via an analyte detection system.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: February 18, 2020
    Assignee: Corning Incorporated
    Inventors: Jeffrey Stapleton King, Prantik Mazumder, Elaine Victoria Seraya
  • Publication number: 20200023822
    Abstract: A waveguide sensor system is provided. The system includes a light source and a waveguide formed from a light transmitting material. Light from the light source enters the waveguide at an input area and travels within the waveguide by total internal reflection to an analyte area and light to be analyzed travels within the waveguide from the analyte area by total internal reflection to an output area. An optical sensor is coupled to the output area and is configured to interact with the light to be analyzed. The system includes a plurality of pores located along the outer surface within the analyte area and formed in the light transmitting material of the waveguide, and the pores are configured to enhance light interaction with the analyte within the analyte area.
    Type: Application
    Filed: February 4, 2019
    Publication date: January 23, 2020
    Inventor: Jeffrey Stapleton King
  • Patent number: 10197499
    Abstract: A waveguide sensor system is provided. The system includes a light source and a waveguide formed from a light transmitting material. Light from the light source enters the waveguide at an input area and travels within the waveguide by total internal reflection to an analyte area and light to be analyzed travels within the waveguide from the analyte area by total internal reflection to an output area. An optical sensor is coupled to the output area and is configured to interact with the light to be analyzed. The system includes a plurality of pores located along the outer surface within the analyte area and formed in the light transmitting material of the waveguide, and the pores are configured to enhance light interaction with the analyte within the analyte area.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: February 5, 2019
    Assignee: Corning Incorporated
    Inventor: Jeffrey Stapleton King
  • Patent number: 10078048
    Abstract: A refractometer assembly comprises a waveguide plate, a diagnostic light source, a photodetector, and a light absorption plate. The diagnostic light source and the photodetector are optically coupled to the waveguide plate such that at least a portion of light emitted from the diagnostic light source is subject to internal reflection at a diagnostic surface of the waveguide plate prior to reaching the photodetector when an analyte film of unknown refractive index n0 forms an optical interface with the diagnostic surface of the waveguide plate. The light absorption plate is configured to absorb light reaching the light absorption plate without undergoing internal reflection at the diagnostic surface when the analyte film forms an optical interface with the diagnostic surface of the waveguide plate. The refractometer assembly defines an optical system where variations in the unknown refractive index n0 are related to variations in a detection signal generated by the photodetector.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: September 18, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Colin Brendan Daly, John Phillip Ertel, Jeffrey Stapleton King
  • Publication number: 20180246091
    Abstract: An analyte capture device and related systems and methods are provided. The analyte capture device includes a glass material, an outer surface defined by the glass material, and a plurality of pores formed in the glass material along at least a portion of the outer surface. The analyte capture device is exposed to an environment containing an analyte for a period of time such that the analyte is captured within the plurality of pores of the glass material. The concentration of the analyte within the glass material is greater than a concentration of the analyte within the environment. The analyte capture device is then removed from the environment, and a property of the analyte within the analyte capture device is detected via an analyte detection system.
    Type: Application
    Filed: February 26, 2018
    Publication date: August 30, 2018
    Inventors: Jeffrey Stapleton King, Prantik Mazumder, Elaine Victoria Seraya
  • Patent number: 9880653
    Abstract: A pressure-sensing touch system that utilizes total-internal reflection of light is disclosed. The touch system includes a transparent sheet having a surface. At least one light source and at least one detector are operably arranged relative to the transparent sheet respective to transmit light through the sheet and to detect the transmitted light. A touch event at the top surface of the transparent sheet causes light to scatter from the transparent sheet, thereby changing the amount of light received at the detector. Since the amount of scattered light generated at the touch event location is a function of the applied pressure at the touch event, the change in the detector signal is used to determine the relative amount of applied pressure. Embodiments that include multiple waveguides and channel waveguides, as well as force-sensing devices, are also disclosed.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: January 30, 2018
    Assignee: Corning Incorporated
    Inventors: Izhak Baharv, Jeffrey Stapleton King
  • Publication number: 20170292914
    Abstract: A waveguide sensor system is provided. The system includes a light source and a waveguide formed from a light transmitting material. Light from the light source enters the waveguide at an input area and travels within the waveguide by total internal reflection to an analyte area and light to be analyzed travels within the waveguide from the analyte area by total internal reflection to an output area. An optical sensor is coupled to the output area and is configured to interact with the light to be analyzed. The system includes a plurality of pores located along the outer surface within the analyte area and formed in the light transmitting material of the waveguide, and the pores are configured to enhance light interaction with the analyte within the analyte area.
    Type: Application
    Filed: April 7, 2016
    Publication date: October 12, 2017
    Inventor: Jeffrey Stapleton King
  • Publication number: 20170212043
    Abstract: A refractometer assembly comprises a waveguide plate, a diagnostic light source, a photodetector, and a light absorption plate. The diagnostic light source and the photodetector are optically coupled to the waveguide plate such that at least a portion of light emitted from the diagnostic light source is subject to internal reflection at a diagnostic surface of the waveguide plate prior to reaching the photodetector when an analyte film of unknown refractive index n0 forms an optical interface with the diagnostic surface of the waveguide plate. The light absorption plate is configured to absorb light reaching the light absorption plate without undergoing internal reflection at the diagnostic surface when the analyte film forms an optical interface with the diagnostic surface of the waveguide plate. The refractometer assembly defines an optical system where variations in the unknown refractive index n0 are related to variations in a detection signal generated by the photodetector.
    Type: Application
    Filed: January 25, 2017
    Publication date: July 27, 2017
    Inventors: Colin Brendan Daly, John Phillip Ertel, Jeffrey Stapleton King
  • Patent number: 9557846
    Abstract: A hybrid touch system that utilizes a combination of a capacitive touch system for position sensing and an optical touch system for pressure sensing is disclosed. The optical touch system includes a transparent sheet having a surface, at least one light source and at least one detector which are operably arranged relative to the transparent sheet to transmit light through the sheet and to detect the transmitted light. Performing position sensing using the capacitive touch system simplifies the pressure-sensing optical touch system.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: January 31, 2017
    Assignee: Corning Incorporated
    Inventors: Izhak Baharav, Jeffrey Stapleton King, Dragan Pikula
  • Publication number: 20160265974
    Abstract: A spectrophotometer optics system is provided. The spectrophotometer optics system includes an optical sensing array and an optical waveguide including an input side and an output side. The input side of the optical waveguide receives input light and the optical sensing array is located at the output side of optical waveguide. The optical waveguide is configured to carry light to be analyzed by total internal reflection to the output side of the optical waveguide and to direct the light to be analyzed toward the optical sensing array. The spectrophotometer optics system includes an optical dispersive element configured to separate the light to be analyzed into separate wavelength components, and the optical dispersive element is supported by the optical waveguide.
    Type: Application
    Filed: March 9, 2015
    Publication date: September 15, 2016
    Inventors: John Phillip Ertel, Jeffrey Stapleton King
  • Patent number: 9285623
    Abstract: A touch system for sensing a touch event that includes a transparent sheet having opposite upper and lower surfaces and an index of refraction n2. The system also has at least one light source that emits light. The light source is arranged in optical communication with the transparent sheet to cause the light to travel within the transparent sheet by total-internal reflection (TIR). At least one detector is arranged to detect the TIR-traveling light and to detect an amount of attenuation in the TIR-traveling light caused by the touch event. An interface layer is disposed on the lower surface of the transparent sheet. The interface layer has a refractive index n1, wherein n1<n2, and has a thickness of equal to or greater than 1 micron. The interface layer obviates the need for an air gap when interfacing the touch system to a display unit of display device.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: March 15, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Jeffrey Stapleton King, William Richard Trutna, Michael John Yadlowsky
  • Patent number: 9213445
    Abstract: An optical touch screen that utilizes a planar transparent sheet and that is configured to determine the position of a touch event on the transparent sheet is disclosed. Light-source elements and light-sensing elements are operably disposed at a perimeter of the transparent sheet. Light is detected over lines-of-sight between the light-source elements and the light-sensing elements. Attenuated lines-of-sight due to the touch event are determined. Central lines are established based on the attenuated lines-of-sight. The locations of central-line intersections are then established. The average of the locations of the central-line intersections is then used to establish the location of the touch event.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: December 15, 2015
    Assignee: CORNING INCORPORATED
    Inventors: Jeffrey Stapleton King, Timothy James Orsley, William Richard Trutna, Richard Clayton Walker
  • Patent number: 9159587
    Abstract: The present disclosure is directed to the use of glass wafers as carriers, interposers, or in other selected applications in which electronic circuitry or operative elements, such as transistors, are formed in the creation of electronic devices. The glass wafers generally include a glass having a coefficient of thermal expansion equal to or substantially equal to a coefficient of thermal expansion of semiconductor silicon, an indexing feature, and a coating on at least a portion of one face of the glass.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: October 13, 2015
    Assignee: Corning Incorporated
    Inventors: Joseph Eugene Canale, Jeffrey Stapleton King, Gary Richard Trott