Patents by Inventor Jeffrey Stubbs

Jeffrey Stubbs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10457763
    Abstract: The present invention relates to an aqueous polymer emulsion comprising at least 30 wt. % of a vinyl copolymer (A), said vinyl copolymer comprising: (I) from 10 to 90 wt. % of 2-octyl acrylate monomer; (II) from 10 to 90 wt. % of at least one itaconate ester monomer according to formula (1) in which A and B may be different or the same and A and B are independently an alkyl group or an aryl group; and (III) from 0 to 80 wt. % of ethylenically unsaturated monomer other than (I) and (II); whereby the summed amount of (I), (II) and (III) is 100 wt. % and whereby the amount of vinyl copolymer (A) is given relative to the total weight amount of the polymers present in the emulsion.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: October 29, 2019
    Assignee: DSM IP ASSETS B.V.
    Inventors: Tijs Nabuurs, Jeffrey Stubbs, Johannes Hendrikus De Bont, Gerardus Cornelis Overbeek
  • Publication number: 20180030186
    Abstract: The present invention relates to an aqueous polymer emulsion comprising at least 30 wt. % of a vinyl copolymer (A), said vinyl copolymer comprising: (I) from 10 to 90 wt. % of 2-octyl acrylate monomer; (II) from 10 to 90 wt. % of at least one itaconate ester monomer according to formula (1) in which A and B may be different or the same and A and B are independently an alkyl group or an aryl group; and (III) from 0 to 80 wt. % of ethylenically unsaturated monomer other than (I) and (II); whereby the summed amount of (I), (II) and (III) is 100 wt. % and whereby the amount of vinyl copolymer (A) is given relative to the total weight amount of the polymers present in the emulsion.
    Type: Application
    Filed: February 12, 2016
    Publication date: February 1, 2018
    Inventors: Tijs NABUURS, Jeffrey STUBBS, Johannes Hendrikus DE BONT, Gerardus Cornelis OVERBEEK
  • Patent number: 9688804
    Abstract: There are described a dispersion of polymeric beads where the beads comprise a copolymer composition comprising (preferably consisting essentially of): copolymers (and processes for making them) comprising (a) at least 8.5 wt-% preferably >=20 wt-% of a higher itaconate diester (preferably dibutyl itaconate—DBI); (b) less than 23 wt-% acid monomer but also sufficient to have an acid value less than 150 mg KOH/g of polymer, (c) optionally with less than 50 wt-% of other itaconate monomers, and (d) optionally less than 77 wt-% of other monomers not (a) to (c). The DBI may be biorenewable. A further embodiment is an aqueous suspension polymerization process for preparing vinyl polymer beads from olefinically unsaturated monomers and a free-radical initiator, where at least 10 wt-% of the monomer is DBI.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: June 27, 2017
    Assignee: DSM IP ASSETS B.V.
    Inventors: Tijs Nabuurs, Gerardus Cornelis Overbeek, Jeffrey Stubbs, Matthew Stewart Gebhard
  • Patent number: 9255171
    Abstract: There are described q oligomer-polymer composition [optionally substantially free of styrene (<1.5 wt-% of copolymer)] comprising oligomer composition O having a weight average molecular weight of from 1000 to 150,000 g/mol (measured by GPC) and polymer composition P having a weight average molecular weight of at least 80,000 g/mol (measured by GPC) the oligomer composition O and the polymer composition P each independently comprising a copolymer composition comprising: (a) at least 8.5 wt-% preferably >=20 wt-% of a higher itaconate diester (preferably dibutyl itaconate—DBI); (b) less than 23 wt-% acid monomer but also sufficient to have an acid value less than 150 mg KOH/g of polymer, (c) optionally with less than 50 wt-% of other itaconate monomers, and (d) optionally less than 77 wt-% of other monomers not (a) to (c). The DBI may be biorenewable. One embodiment is an aqueous dispersion of vinyl sequential polymer of two phases: A) 40 to 90 wt-% of a vinyl polymer A with Tg from ?50 to 30° C.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: February 9, 2016
    Assignee: DSM IP ASSETS B.V.
    Inventors: Tijs Nabuurs, Gerardus Cornelis Overbeek, Jeffrey Stubbs, Matthew Stewart Gebhard
  • Patent number: 9012027
    Abstract: The invention relates to an aqueous emulsion comprising at least a vinyl polymer, said vinyl polymer comprising: a) 45 to 99 wt % of itaconate ester monomers having formula (I), wherein R and R? are independently an alkyl or an aryl group; b) 0.1 to 15 wt % of ionic or potentially ionic unsaturated monomers; c) 0 to 54 wt % of unsaturated monomers, different from a) and b); and 0.9 to 54.9 wt % by weight of total monomers of a chaser monomer composition added subsequently and polymerized after the polymerization of monomers a), b) and c); wherein a)+b)+c) and the chaser monomer composition add up to 100%; and wherein the aqueous emulsion contains less than 0.5 wt % free itaconate ester monomers of formula I based on the total weight of the aqueous emulsion.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: April 21, 2015
    Assignee: DSM IP Assets B.V.
    Inventors: Tijs Nabuurs, Gerardus Cornelis Overbeek, Jeffrey Stubbs
  • Publication number: 20150017459
    Abstract: There is described a method of preparing a post-modified polymer the method comprising the steps of: (1) polymerising a monomer composition comprising from 2.5 to 75% by weight of the total monomer composition of at least one itaconic anhydride, precursor thereof and/or derivative thereof in a polymerisation method to obtain an itaconate Polymer A; (2) reacting in a post modification step at least 10 mole-% of the anhydride groups, anhydride precursor groups and/or anhydride derived groups of the Polymer A obtained from step (1) with a Nucleophile B to form a post-modified Polymer C, and optionally using said polymer C as seed or stabiliser in a further step (3) to form a sequential Polymer D.
    Type: Application
    Filed: February 4, 2013
    Publication date: January 15, 2015
    Inventors: Tijs Nabuurs, Gerardus Cornelis Overbeek, Jeffrey Stubbs, Matthew Stewart Gebhard
  • Publication number: 20150017460
    Abstract: There are described q oligomer-polymer composition [optionally substantially free of styrene (<1.5 wt-% of copolymer)] comprising oligomer composition O having a weight average molecular weight of from 1000 to 150,000 g/mol (measured by GPC) and polymer composition P having a weight average molecular weight of at least 80,000 g/mol (measured by GPC) the oligomer composition O and the polymer composition P each independently comprising a copolymer composition comprising: (a) at least 8.5 wt-% preferably >=20 wt-% of a higher itaconate diester (preferably dibutyl itaconate—DBI); (b) less than 23 wt-% acid monomer but also sufficient to have an acid value less than 150 mg KOH/g of polymer, (c) optionally with less than 50 wt-% of other itaconate monomers, and (d) optionally less than 77 wt-% of other monomers not (a) to (c). The DBI may be biorenewable. One embodiment is an aqueous dispersion of vinyl sequential polymer of two phases: A) 40 to 90 wt-% of a vinyl polymer A with Tg from ?50 to 30° C.
    Type: Application
    Filed: February 4, 2013
    Publication date: January 15, 2015
    Inventors: Tijs Nabuurs, Gerardus Cornelis Overbeek, Jeffrey Stubbs, Matthew Stewart Gebhard
  • Publication number: 20150017451
    Abstract: There is described a polymer blend of a first and second polymer comprising: a) a first polymer of: vinyl (co)polymer; alkyd; urethane acrylic copolymer; polyurethane and/or polyester; b) a second copolymer from: b1) optionally at least 10 wt-% of one or derivatives of itaconic acid and/or isomers thereof; b2) up to 20 wt-% of one or more acid functional (or potentially acid functional) monomer(s) and b3) vinyl monomer(s) where wt % of each monomer (b1 to b3) is based on total (b) and where at least one of the first and second polymer is obtained from an itacon-functional monomer such as itaconic acid and/or its derivatives.
    Type: Application
    Filed: February 4, 2013
    Publication date: January 15, 2015
    Inventors: Tijs Nabuurs, Jeffrey Stubbs, Matthew Stewart Gebhard, Gerardus Cornelis Overbeek
  • Publication number: 20150010863
    Abstract: There is described use of a biorenewable copolymers in one or more of: in a topical and/or personal care composition, as a binder for toner, as an encapsulating agent for a colorant, as a hybrid colorant, as additive for sheet moulding compounds, as a plastic pigment, as a filler for composite materials such as concrete, as a filler for coatings and/or waxes; and/or as a spacer in a display; where the biorenewable copolymer comprises (a) at least 8. 5 wt-% preferably >=20 wt-% of a higher itaconate diester (preferably dibutyl itaconate—DBI); (b) less than 23 wt-% acid monomer but also sufficient to have an acid value less than 150 mg KOH/g of polymer, (c) optionally with less than 50 wt-% of other itaconate monomers, and (d) optionally less than 77 wt-% of other monomers not (a) to (c). The DBI may be biorenewable. One embodiment is an aqueous dispersion of vinyl sequential polymer of two phases: A) 40 to 90 wt-% of a vinyl polymer A with Tg from ?50 to 30° C.
    Type: Application
    Filed: February 4, 2013
    Publication date: January 8, 2015
    Inventors: Tijs Nabuurs, Gerardus Cornelis Overbeek, Jeffrey Stubbs, Matthew Stewart Gebhard
  • Publication number: 20150005442
    Abstract: There are described vinyl sequential copolymers (and processes for making them) comprising (a) at least 8. 5 wt-% preferably >=20 wt-% of a higher itaconate diester (preferably dibutyl itaconate—DBI); (b) less than 23 wt-% acid monomer but also sufficient to have an acid value less than 150 mg KOH/g of polymer, (c) optionally with less than 50 wt-% of other itaconate monomers, and (d) optionally less than 77 wt-% of other monomers not (a) to (c). The DBI may be biorenewable. One embodiment is an aqueous dispersion of the vinyl sequential polymer of two phases: A) 40 to 90 wt-% of a vinyl polymer A with Tg from ?50 to 30° C.; and B) 10 to 60 wt-% of a vinyl polymer B with Tg from 50 to 130° C.; where DBI is used to prepare A and/or B and polymer A has from 0.1 to 10 wt-% of at least one acid-functional olefinically unsaturated monomer.
    Type: Application
    Filed: February 4, 2013
    Publication date: January 1, 2015
    Applicant: DSM IP ASSETS B.V.
    Inventors: Tijs Nabuurs, Gerardus Cornelis Overbeek, Jeffrey Stubbs, Matthew Stewart Gebhard
  • Publication number: 20140377464
    Abstract: There are described a dispersion of polymeric beads where the beads comprise a copolymer composition comprising (preferably consisting essentially of): copolymers (and processes for making them) comprising (a) at least 8.5 wt-% preferably >=20 wt-% of a higher itaconate diester (preferably dibutyl itaconate—DBI); (b) less than 23 wt-% acid monomer but also sufficient to have an acid value less than 150 mg KOH/g of polymer, (c) optionally with less than 50 wt-% of other itaconate monomers, and (d) optionally less than 77 wt-% of other monomers not (a) to (c). The DBI may be biorenewable. A further embodiment is an aqueous suspension polymerisation process for preparing vinyl polymer beads from olefinically unsaturated monomers and a free-radical initiator, where at least 10 wt-% of the monomer is DBI.
    Type: Application
    Filed: February 4, 2013
    Publication date: December 25, 2014
    Inventors: Tijs Nabuurs, Gerardus Cornelis Overbeek, Jeffrey Stubbs, Matthew Stewart Gebhard
  • Publication number: 20130065070
    Abstract: The invention relates to an aqueous emulsion comprising at least a vinyl polymer, said vinyl polymer comprising: a) 45 to 99 wt % of itaconate ester monomers having formula (I), wherein R and R? are independently an alkyl or an aryl group; b) 0.1 to 15 wt % of ionic or potentially ionic unsaturated monomers; c) 0 to 54 wt % of unsaturated monomers, different from a) and b); and 0.9 to 54.9 wt % by weight of total monomers of a chaser monomer composition added subsequently and polymerised after the polymerisation of monomers a), b) and c); wherein a)+b)+c) and the chaser monomer composition add up to 100%; and wherein the aqueous emulsion contains less than 0.5 wt % free itaconate ester monomers of formula I based on the total weight of the aqueous emulsion.
    Type: Application
    Filed: December 17, 2010
    Publication date: March 14, 2013
    Inventors: Tijs Nabuurs, Gerardus Cornelis Overbeek, Jeffrey Stubbs