Patents by Inventor Jeffrey Tobin

Jeffrey Tobin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11581408
    Abstract: Embodiments of the disclosure provide an improved apparatus and methods for nitridation of stacks of materials. In one embodiment, a method for processing a substrate in a processing region of a process chamber is provided. The method includes generating and flowing plasma species from a remote plasma source to a delivery member having a longitudinal passageway, flowing plasma species from the longitudinal passageway to an inlet port formed in a sidewall of the process chamber, wherein the plasma species are flowed at an angle into the inlet port to promote collision of ions or reaction of ions with electrons or charged particles in the plasma species such that ions are substantially eliminated from the plasma species before entering the processing region of the process chamber, and selectively incorporating atomic radicals from the plasma species in silicon or polysilicon regions of the substrate.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: February 14, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Matthew Scott Rogers, Roger Curtis, Lara Hawrylchak, Canfeng Lai, Bernard L. Hwang, Jeffrey A. Tobin, Christopher S. Olsen, Malcolm J. Bevan
  • Patent number: 11450509
    Abstract: A method and apparatus for plasma processing of substrates is provided. A processing chamber has a substrate support and a lid assembly facing the substrate support. The lid assembly has a plasma source that comprises a coil disposed within a conductive plate, which may comprise nested conductive rings. The coil is substantially coplanar with the conductive plate, and insulated therefrom by an insulator that fits within a channel formed in the conductive plate, or nests within the conductive rings. A field concentrator is provided around the coil, and insulated therefrom by isolators. The plasma source is supported from a conductive support plate. A gas distributor supplies gas to the chamber through a central opening of the support plate and plasma source from a conduit disposed through the conductive plate.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: September 20, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Canfeng Lai, Jeffrey Tobin, Peter I. Porshnev, Jose Antonio Marin
  • Publication number: 20210202702
    Abstract: Embodiments of the disclosure provide an improved apparatus and methods for nitridation of stacks of materials. In one embodiment, a method for processing a substrate in a processing region of a process chamber is provided. The method includes generating and flowing plasma species from a remote plasma source to a delivery member having a longitudinal passageway, flowing plasma species from the longitudinal passageway to an inlet port formed in a sidewall of the process chamber, wherein the plasma species are flowed at an angle into the inlet port to promote collision of ions or reaction of ions with electrons or charged particles in the plasma species such that ions are substantially eliminated from the plasma species before entering the processing region of the process chamber, and selectively incorporating atomic radicals from the plasma species in silicon or polysilicon regions of the substrate.
    Type: Application
    Filed: March 15, 2021
    Publication date: July 1, 2021
    Inventors: Matthew Scott ROGERS, Roger CURTIS, Lara HAWRYLCHAK, Canfeng LAI, Bernard L. HWANG, Jeffrey A. TOBIN, Christopher S. OLSEN, Malcolm J. BEVAN
  • Patent number: 10950698
    Abstract: Embodiments of the disclosure provide an improved apparatus and methods for nitridation of stacks of materials. In one embodiment, a method for processing a substrate in a processing region of a process chamber is provided. The method includes generating and flowing plasma species from a remote plasma source to a delivery member having a longitudinal passageway, flowing plasma species from the longitudinal passageway to an inlet port formed in a sidewall of the process chamber, wherein the plasma species are flowed at an angle into the inlet port to promote collision of ions or reaction of ions with electrons or charged particles in the plasma species such that ions are substantially eliminated from the plasma species before entering the processing region of the process chamber, and selectively incorporating atomic radicals from the plasma species in silicon or polysilicon regions of the substrate.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: March 16, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Matthew Scott Rogers, Roger Curtis, Lara Hawrylchak, Canfeng Lai, Bernard L. Hwang, Jeffrey Tobin, Christopher S. Olsen, Malcolm Bevan
  • Publication number: 20210010160
    Abstract: Embodiments of the present invention generally relate to methods for removing contaminants and native oxides from substrate surfaces. The methods generally include removing contaminants disposed on the substrate surface using a plasma process, and then cleaning the substrate surface by use of a remote plasma assisted dry etch process.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 14, 2021
    Inventors: Christopher S. OLSEN, Theresa Kramer GUARINI, Jeffrey A. TOBIN, Lara HAWRYLCHAK, Peter STONE, Chi Wei LO, Saurabh CHOPRA
  • Patent number: 10837122
    Abstract: Embodiments of the present invention generally relate to methods for removing contaminants and native oxides from substrate surfaces. The methods generally include removing contaminants disposed on the substrate surface using a plasma process, and then cleaning the substrate surface by use of a remote plasma assisted dry etch process.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: November 17, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Christopher S. Olsen, Theresa K. Guarini, Jeffrey Tobin, Lara Hawrylchak, Peter Stone, Chi Wei Lo, Saurabh Chopra
  • Publication number: 20200144027
    Abstract: A method and apparatus for plasma processing of substrates is provided. A processing chamber has a substrate support and a lid assembly facing the substrate support. The lid assembly has a plasma source that comprises a coil disposed within a conductive plate, which may comprise nested conductive rings. The coil is substantially coplanar with the conductive plate, and insulated therefrom by an insulator that fits within a channel formed in the conductive plate, or nests within the conductive rings. A field concentrator is provided around the coil, and insulated therefrom by isolators. The plasma source is supported from a conductive support plate. A gas distributor supplies gas to the chamber through a central opening of the support plate and plasma source from a conduit disposed through the conductive plate.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 7, 2020
    Inventors: Canfeng LAI, Jeffrey TOBIN, Peter I. PORSHNEV, Jose Antonio MARIN
  • Patent number: 10626500
    Abstract: Embodiments described herein relate to a showerhead having a reflector plate with a gas injection insert for radially distributing gas. In one embodiment, a showerhead assembly includes a reflector plate and a gas injection insert. The reflector plate includes at least one gas injection port. The gas injection insert is disposed in the reflector plate, and includes a plurality of apertures. The gas injection insert also includes a baffle plate disposed in the gas injection insert, wherein the baffle plate also includes a plurality of apertures. A first plenum is formed between a first portion of the baffle plate and the reflector plate, and a second plenum is formed between a second portion of the baffle plate and the reflector plate. The plurality of apertures of the gas injection insert and the plurality of apertures of the baffle plate are not axially aligned.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: April 21, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kartik Shah, Chaitanya A. Prasad, Kevin Joseph Bautista, Jeffrey Tobin, Umesh M. Kelkar, Lara Hawrylchak
  • Patent number: 10535513
    Abstract: Provided apparatus and methods for back side passivation of a substrate. The systems comprise an elongate support with an open top surface forming a support ring so that when a substrate is on the support ring, a cavity is formed within the elongate support. A plasma generator is coupled to the cavity to generate a plasma within the cavity to deposit a passivation film on the back side of the substrate.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: January 14, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Lara Hawrylchak, Jeffrey Tobin
  • Patent number: 10529541
    Abstract: A method and apparatus for plasma processing of substrates is provided. A processing chamber has a substrate support and a lid assembly facing the substrate support. The lid assembly has a plasma source that comprises a coil disposed within a conductive plate, which may comprise nested conductive rings. The coil is substantially coplanar with the conductive plate, and insulated therefrom by an insulator that fits within a channel formed in the conductive plate, or nests within the conductive rings. A field concentrator is provided around the coil, and insulated therefrom by isolators. The plasma source is supported from a conductive support plate. A gas distributor supplies gas to the chamber through a central opening of the support plate and plasma source from a conduit disposed through the conductive plate.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: January 7, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Canfeng Lai, Jeffrey Tobin, Peter I. Porshnev, Jose Antonio Marin
  • Patent number: 10519547
    Abstract: Embodiments of the present disclosure generally relate to a susceptor for thermal processing of semiconductor substrates. In one embodiment, the susceptor includes a first rim, an inner region coupled to and surrounded by the first rim, and one or more annular protrusions formed on the inner region. The one or more annular protrusions may be formed on the inner region at a location corresponding to the location where a valley is formed on the substrate, and the one or more annular protrusions help reduce or eliminate the formation of the valley.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: December 31, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Karthik Ramanathan, Kartik Shah, Nyi O. Myo, Schubert S. Chu, Jeffrey Tobin, Errol Antonio C. Sanchez, Palamurali Gajendra
  • Publication number: 20190382917
    Abstract: Embodiments of the present invention generally relate to methods for removing contaminants and native oxides from substrate surfaces. The methods generally include removing contaminants disposed on the substrate surface using a plasma process, and then cleaning the substrate surface by use of a remote plasma assisted dry etch process.
    Type: Application
    Filed: August 26, 2019
    Publication date: December 19, 2019
    Inventors: Christopher S. OLSEN, Theresa K. GUARINI, Jeffrey TOBIN, Lara HAWRYLCHAK, Peter STONE, Chi Wei LO, Saurabh CHOPRA
  • Patent number: 10453733
    Abstract: In one embodiment, a substrate support assembly includes a susceptor for supporting a substrate, and a supporting transfer mechanism coupled to the susceptor, the supporting transfer mechanism having a surface for supporting a peripheral edge of the substrate, the supporting transfer mechanism being movable relative to an upper surface of the susceptor.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: October 22, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Masato Ishii, Mehmet Tugrul Samir, Shu-Kwan Lau, Jeffrey Tobin
  • Patent number: 10428441
    Abstract: Embodiments of the present invention generally relate to methods for removing contaminants and native oxides from substrate surfaces. The methods generally include removing contaminants disposed on the substrate surface using a plasma process, and then cleaning the substrate surface by use of a remote plasma assisted dry etch process.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: October 1, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Christopher S. Olsen, Theresa K. Guarini, Jeffrey Tobin, Lara Hawrylchak, Peter Stone, Chi Wei Lo, Saurabh Chopra
  • Publication number: 20190194810
    Abstract: Embodiments described herein relate to a showerhead having a reflector plate with a gas injection insert for radially distributing gas. In one embodiment, a showerhead assembly includes a reflector plate and a gas injection insert. The reflector plate includes at least one gas injection port. The gas injection insert is disposed in the reflector plate, and includes a plurality of apertures. The gas injection insert also includes a baffle plate disposed in the gas injection insert, wherein the baffle plate also includes a plurality of apertures. A first plenum is formed between a first portion of the baffle plate and the reflector plate, and a second plenum is formed between a second portion of the baffle plate and the reflector plate. The plurality of apertures of the gas injection insert and the plurality of apertures of the baffle plate are not axially aligned.
    Type: Application
    Filed: March 4, 2019
    Publication date: June 27, 2019
    Inventors: Kartik SHAH, Chaitanya A. PRASAD, Kevin Joseph BAUTISTA, Jeffrey TOBIN, Umesh M. KELKAR, Lara HAWRYLCHAK
  • Publication number: 20190088485
    Abstract: Embodiments of the disclosure provide an improved apparatus and methods for nitridation of stacks of materials. In one embodiment, a method for processing a substrate in a processing region of a process chamber is provided. The method includes generating and flowing plasma species from a remote plasma source to a delivery member having a longitudinal passageway, flowing plasma species from the longitudinal passageway to an inlet port formed in a sidewall of the process chamber, wherein the plasma species are flowed at an angle into the inlet port to promote collision of ions or reaction of ions with electrons or charged particles in the plasma species such that ions are substantially eliminated from the plasma species before entering the processing region of the process chamber, and selectively incorporating atomic radicals from the plasma species in silicon or polysilicon regions of the substrate.
    Type: Application
    Filed: August 13, 2018
    Publication date: March 21, 2019
    Inventors: Matthew Scott ROGERS, Roger CURTIS, Lara HAWRYLCHAK, Ken Kaung LAI, Bernard L. HWANG, Jeffrey TOBIN, Christopher S. OLSEN, Malcolm BEVAN
  • Patent number: 10221483
    Abstract: Embodiments described herein relate to a showerhead having a reflector plate with a gas injection insert for radially distributing gas. In one embodiment, a showerhead assembly includes a reflector plate and a gas injection insert. The reflector plate includes at least one gas injection port. The gas injection insert is disposed in the reflector plate, and includes a plurality of apertures. The gas injection insert also includes a baffle plate disposed in the gas injection insert, wherein the baffle plate also includes a plurality of apertures. A first plenum is formed between a first portion of the baffle plate and the reflector plate, and a second plenum is formed between a second portion of the baffle plate and the reflector plate. The plurality of apertures of the gas injection insert and the plurality of apertures of the baffle plate are not axially aligned.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: March 5, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kartik Shah, Chaitanya A. Prasad, Kevin Joseph Bautista, Jeffrey Tobin, Umesh M. Kelkar, Lara Hawrylchak
  • Patent number: 10128144
    Abstract: Embodiments of the disclosure generally relate to a support cylinder used in a thermal process chamber. In one embodiment, the support cylinder includes a hollow cylindrical body comprising an inner peripheral surface, an outer peripheral surface parallel to the inner peripheral surface, wherein the inner peripheral surface and the outer peripheral surface extend along a direction parallel to a longitudinal axis of the support cylinder, and a lateral portion extending radially from the outer peripheral surface to the inner peripheral surface, wherein the lateral portion comprises a first end having a first beveled portion, a first rounded portion, and a first planar portion connecting the first beveled portion and the first rounded portion, and a second end opposing the first end, the second end having a second beveled portion, a second rounded portion, and a second planar portion connecting the second beveled portion and the second rounded portion.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: November 13, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Mehran Behdjat, Aaron Muir Hunter, Joseph M. Ranish, Norman Tam, Jeffrey Tobin, Jiping Li, Martin Tran
  • Patent number: 10049881
    Abstract: Embodiments of the invention provide an improved apparatus and methods for nitridation of stacks of materials. In one embodiment, a remote plasma system includes a remote plasma chamber defining a first region for generating a plasma comprising ions and radicals, a process chamber defining a second region for processing a semiconductor device, the process chamber comprising an inlet port formed in a sidewall of the process chamber, the inlet port being in fluid communication with the second region, and a delivery member disposed between the remote plasma chamber and the process chamber and having a passageway in fluid communication with the first region and the inlet port, wherein the delivery member is configured such that a longitudinal axis of the passageway intersects at an angle of about 20 degrees to about 80 degrees with respect to a longitudinal axis of the inlet port.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: August 14, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Matthew S. Rogers, Roger Curtis, Lara Hawrylchak, Ken Kaung Lai, Bernard L. Hwang, Jeffrey Tobin, Christopher Olsen, Malcolm J. Bevan
  • Publication number: 20180182660
    Abstract: In one embodiment, a substrate support assembly includes a susceptor for supporting a substrate, and a supporting transfer mechanism coupled to the susceptor, the supporting transfer mechanism having a surface for supporting a peripheral edge of the substrate, the supporting transfer mechanism being movable relative to an upper surface of the susceptor.
    Type: Application
    Filed: February 26, 2018
    Publication date: June 28, 2018
    Inventors: Masato ISHII, Mehmet Tugrul SAMIR, Shu-Kwan LAU, Jeffrey TOBIN