Patents by Inventor Jeffrey Troester

Jeffrey Troester has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220057127
    Abstract: A vapor-compression system includes a centrifugal compressor configured to increase a pressure of a refrigerant based on at least one of an activation of a device or the device being equal to or above a first threshold temperature. A fluid communication system is configured to provide, to the device, a portion of the refrigerant in a liquid state. The portion of the liquid refrigerant in a liquid state is configured to have a saturation temperature equal to or below the first temperature threshold.
    Type: Application
    Filed: August 17, 2021
    Publication date: February 24, 2022
    Inventors: Andrew Zug, Jeffrey Troester
  • Patent number: 10131113
    Abstract: In some examples, the disclosure describes a method including densifying a layer of carbon fibers by at least one of depositing a resin on the layer of carbon fibers via a print head of a three-dimensional printing system or applying CVD on the layer of carbon fibers via the print head; and forming at least one additional layer of densified carbon fibers on the densified layer of carbon fibers, wherein forming the at least one additional layer of densified carbon fibers comprises, for each respective layer of the at least one additional layer, adding an additional layer of carbon fibers on the densified layer of carbon fibers, and densifying the additional layer of carbon fibers by at least one of depositing the resin on the additional layer of carbon fibers or applying CVD on the additional layer of carbon fibers. In some examples, the example method may be used to form a densified carbon-carbon composite component, such as, e.g., a densified carbon-carbon composite brake disc.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: November 20, 2018
    Assignee: Honeywell International Inc.
    Inventors: Jeffrey Troester, Slawomir T. Fryska, David Flask
  • Patent number: 10022890
    Abstract: In some examples, the disclosure describes a method including depositing a first layer including a resin and at least one of a carbon fiber or a carbon fiber precursor material on a work surface of a three-dimensional printing system, carbonizing at least the resin of the first layer using a carbonizer attached to the three-dimensional printer to form a first layer of carbon-carbon composite including carbon fibers and carbonized matrix material, depositing an additional layer including a resin and at least one of a carbon fiber or a carbon fiber precursor material of material on the first layer of carbon-carbon composite, and carbonizing at least the resin of the additional layer using the carbonizer to form an additional layer of carbon-carbon composite on the first layer of carbon-carbon composite.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: July 17, 2018
    Assignee: Honeywell International Inc.
    Inventors: Mark L. La Forest, Slawomir T. Fryska, David Flask, Jeffrey Troester
  • Patent number: 9944526
    Abstract: In some examples, a method for forming a carbon fiber preform includes depositing, via a print head of a three-dimensional printing system, a first plurality of carbon fibers to form a first layer of carbon fibers in approximately an x-y plane, wherein the first plurality of carbon fibers are deposited around an array of carbon fiber filaments extending in approximately a z-axis direction relative to the x-y plane.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: April 17, 2018
    Assignee: Honeywell International Inc.
    Inventors: Jeffrey Troester, Slawomir T. Fryska
  • Publication number: 20170072587
    Abstract: In some examples, the disclosure describes a method including depositing a first layer including a resin and at least one of a carbon fiber or a carbon fiber precursor material on a work surface of a three-dimensional printing system, carbonizing at least the resin of the first layer using a carbonizer attached to the three-dimensional printer to form a first layer of carbon-carbon composite including carbon fibers and carbonized matrix material, depositing an additional layer including a resin and at least one of a carbon fiber or a carbon fiber precursor material of material on the first layer of carbon-carbon composite, and carbonizing at least the resin of the additional layer using the carbonizer to form an additional layer of carbon-carbon composite on the first layer of carbon-carbon composite.
    Type: Application
    Filed: September 15, 2015
    Publication date: March 16, 2017
    Inventors: Mark L. La Forest, Slawomir T. Fryska, David Flask, Jeffrey Troester
  • Patent number: 9506516
    Abstract: A brake monitoring system comprises a wear pin that is operatively connected to a brake to be monitored, wherein the wear pin can translate along a longitudinal axis of the wear pin and not rotate about the longitudinal axis; a wear gear rotationally affixed to the wear pin to enable the wear gear to rotate as the wear pin translates; and a counting device operatively adjacent the wear gear, wherein the counting device measures one of an amount of rotation of the wear gear and a rate of rotation of the wear gear.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: November 29, 2016
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Jeffrey Troester, Christian D. Brinkley, Stephen Handel
  • Publication number: 20160332881
    Abstract: In some examples, a method for forming a carbon fiber preform includes depositing, via a print head of a three-dimensional printing system, a first plurality of carbon fibers to form a first layer of carbon fibers in approximately an x-y plane, wherein the first plurality of carbon fibers are deposited around an array of carbon fiber filaments extending in approximately a z-axis direction relative to the x-y plane.
    Type: Application
    Filed: May 13, 2015
    Publication date: November 17, 2016
    Inventors: Jeffrey Troester, Slawomir T. Fryska
  • Publication number: 20160332416
    Abstract: In some examples, the disclosure describes a method including densifying a layer of carbon fibers by at least one of depositing a resin on the layer of carbon fibers via a print head of a three-dimensional printing system or applying CVD on the layer of carbon fibers via the print head; and forming at least one additional layer of densified carbon fibers on the densified layer of carbon fibers, wherein forming the at least one additional layer of densified carbon fibers comprises, for each respective layer of the at least one additional layer, adding an additional layer of carbon fibers on the densified layer of carbon fibers, and densifying the additional layer of carbon fibers by at least one of depositing the resin on the additional layer of carbon fibers or applying CVD on the additional layer of carbon fibers. In some examples, the example method may be used to form a densified carbon-carbon composite component, such as, e.g., a densified carbon-carbon composite brake disc.
    Type: Application
    Filed: May 13, 2015
    Publication date: November 17, 2016
    Inventors: Jeffrey Troester, Slawomir T. Fryska, David Flask
  • Publication number: 20160305499
    Abstract: A brake monitoring system comprises a wear pin that is operatively connected to a brake to be monitored, wherein the wear pin can translate along a longitudinal axis of the wear pin and not rotate about the longitudinal axis; a wear gear rotationally affixed to the wear pin to enable the wear gear to rotate as the wear pin translates; and a counting device operatively adjacent the wear gear, wherein the counting device measures one of an amount of rotation of the wear gear and a rate of rotation of the wear gear.
    Type: Application
    Filed: April 17, 2015
    Publication date: October 20, 2016
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Jeffrey Troester, Christian D. Brinkley, Stephen Handel